• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Espaces de Müntz, plongements de Carleson, et opérateurs de Cesàro / Müntz spaces, Carleson embeddings and Cesàro operators

Gaillard, Loïc 07 December 2017 (has links)
Pour une suite ⋀ = (λn) satisfaisant la condition de Müntz Σn 1/λn < +∞ et pour p ∈ [1,+∞), on définit l'espace de Müntz Mp⋀ comme le sous-espace fermé de Lp([0, 1]) engendré par les monômes yn : t ↦ tλn. L'espace M∞⋀ est défini de la même façon comme un sous-espace de C([0, 1]). Lorsque la suite (λn + 1/p)n est lacunaire avec un grand indice, nous montrons que la famille (gn) des monômes normalisés dans Lp est (1 + ε)-isométrique à la base canonique de lp. Dans le cas p = +∞, les monômes (yn) forment une famille normalisée et (1 + ε)-isométrique à la base sommante de c. Ces résultats sont un raffinement asymptotique d'un théorème bien connu pour les suites lacunaires. D'autre part, pour p ∈ [1, +∞), nous étudions les mesures de Carleson des espaces de Müntz, c'est-à-dire les mesures boréliennes μ sur [0,1) telles que l'opérateur de plongement Jμ,p : Mp⋀ ⊂ Lp(μ) est borné. Lorsque ⋀ est lacunaire, nous prouvons que si les (gn) sont uniformément bornés dans Lp(μ), alors μ est une mesure de Carleson de Mq⋀ pour tout q > p. Certaines conditionsgéométriques sur μ au voisinage du point 1 sont suffsantes pour garantir la compacité de Jμ,p ou son appartenance à d'autres idéaux d'opérateurs plus fins. Plus précisément, nous estimons les nombres d'approximation de Jμ,p dans le cas lacunaire et nous obtenons même des équivalents pour certaines suites ⋀. Enfin, nous calculons la norme essentielle del'opérateur de moyenne de Cesàro Γp : Lp → Lp : elle est égale à sa norme, c'est-à-dire à p'. Ce résultat est aussi valide pour l'opérateur de Cesàro discret. Nous introduisons les sous-espaces de Müntz des espaces de Cesàro Cesp pour p ∈ [1, +∞]. Nous montrons que la norme essentielle de l'opérateur de multiplication par Ψ est égale à ∥Ψ∥∞ dans l'espace deCesàro, et à |Ψ(1)| dans les espaces de Müntz-Cesàro. / For a sequence ⋀ = (λn) satisfying the Müntz condition Σn 1/λn < +∞ and for p ∈ [1,+∞), we define the Müntz space Mp⋀ as the closed subspace of Lp([0, 1]) spanned by the monomials yn : t ↦ tλn. The space M∞⋀ is defined in the same way as a subspace of C([0, 1]). When the sequence (λn + 1/p)n is lacunary with a large ratio, we prove that the sequence of normalized Müntz monomials (gn) in Lp is (1 + ε)-isometric to the canonical basis of lp. In the case p = +∞, the monomials (yn) form a sequence which is (1 + ε)-isometric to the summing basis of c. These results are asymptotic refinements of a well known theorem for the lacunary sequences. On the other hand, for p ∈ [1, +∞), we investigate the Carleson measures for Müntz spaces, which are defined as the Borel measures μ on [0; 1) such that the embedding operator Jμ,p : Mp⋀ ⊂ Lp(μ) is bounded. When ⋀ is lacunary, we prove that if the (gn) are uniformly bounded in Lp(μ), then for any q > p, the measure μ is a Carleson measure for Mq⋀. These questions are closely related to the behaviour of μ in the neighborhood of 1. Wealso find some geometric conditions about the behaviour of μ near the point 1 that ensure the compactness of Jμ,p, or its membership to some thiner operator ideals. More precisely, we estimate the approximation numbers of Jμ,p in the lacunary case and we even obtain some equivalents for particular lacunary sequences ⋀. At last, we show that the essentialnorm of the Cesàro-mean operator Γp : Lp → Lp coincides with its norm, which is p'. This result is also valid for the Cesàro sequence operator. We introduce some Müntz subspaces of the Cesàro function spaces Cesp, for p ∈ [1, +∞]. We show that the value of the essential norm of the multiplication operator TΨ is ∥Ψ∥∞ in the Cesàaro spaces. In the Müntz-Cesàrospaces, the essential norm of TΨ is equal to |Ψ(1)|.
2

Centres de Daugavet et opérateurs de composition à poids

Demazeux, Romain 24 November 2011 (has links) (PDF)
Le propos de cette thèse est l'étude de la norme ||G+T|| d'une perturbation compacte d'un opérateur G agissant entre des espaces de Banach. Dans un premier temps nous abordons le problème du point de vue de la propriété de Daugavet : un opérateur G un centre de Daugavet si tout opérateur T de rang 1 (ou de manière équivalente tout opérateur compact) vérifie ||G+T||=||G||+||T||. Dans le premier chapitre, nous donnons des exemples de centres de Daugavet parmi les opérateurs de composition à poids agissant sur certains espaces de fonctions, comme par exemple l'espace C(K) des fonctions continues sur un compact parfait K, l'algèbre du disque, ou encore l'espace des fonctions lipschitziennes sur un espace métrique complet. Dans le second chapitre, nous étudions une propriété un peu plus faible, à savoir que l'équation ||G+T||=||G||+||T|| ne soit plus satisfaite que pour une certaine classe d'opérateurs de rang 1, et nous appelons alors un tel opérateur G un presque centre de Daugavet. Nous donnons une caractérisation des presque centres de Daugavet en terme de l^1-type canonique et d'épaisseur de l'opérateur G. Ceci nous permet alors d'obtenir une caractérisation des opérateurs qui fixent une copie de l'espace l^1. Le point de vue du dernier chapitre est différent : on ne cherche plus à trouver G qui " maximise " la norme de G+T pour tout opérateur compact T, mais à trouver un opérateur compact T qui minimise ||G+T||. En d'autres termes, on cherche à évaluer la norme essentielle de G. Nous complétons certains résultats obtenus dans le cadre des opérateurs de composition à poids agissant entre différents espaces de Hardy.
3

Centres de Daugavet et opérateurs de composition à poids / Daugavet centers and weighted composition operators

Demazeux, Romain 24 November 2011 (has links)
Le propos de cette thèse est l’étude de la norme ||G+T|| d’une perturbation compacte d’un opérateur G agissant entre des espaces de Banach. Dans un premier temps nous abordons le problème du point de vue de la propriété de Daugavet : un opérateur G un centre de Daugavet si tout opérateur T de rang 1 (ou de manière équivalente tout opérateur compact) vérifie ||G+T||=||G||+||T||. Dans le premier chapitre, nous donnons des exemples de centres de Daugavet parmi les opérateurs de composition à poids agissant sur certains espaces de fonctions, comme par exemple l’espace C(K) des fonctions continues sur un compact parfait K, l’algèbre du disque, ou encore l’espace des fonctions lipschitziennes sur un espace métrique complet. Dans le second chapitre, nous étudions une propriété un peu plus faible, à savoir que l’équation ||G+T||=||G||+||T|| ne soit plus satisfaite que pour une certaine classe d’opérateurs de rang 1, et nous appelons alors un tel opérateur G un presque centre de Daugavet. Nous donnons une caractérisation des presque centres de Daugavet en terme de l1-type canonique et d’épaisseur de l’opérateur G. Ceci nous permet alors d’obtenir une caractérisation des opérateurs qui fixent une copie de l’espace l1.Le point de vue du dernier chapitre est différent : on ne cherche plus à trouver G qui « maximise » la norme de G+T pour tout opérateur compact T, mais à trouver un opérateur compact T qui minimise ||G+T||. En d’autres termes, on cherche à évaluer la norme essentielle de G. Nous complétons certains résultats obtenus dans le cadre des opérateurs de composition à poids agissant entre différents espaces de Hardy. / This thesis is about the study of the norm ||G+T|| of a compact perturbation of an operator G acting between Banach spaces. We first use the Daugavet property’s point of view: an operator G is a Daugavet center if every rank-1 operator (or equivalently every compact operator) T satisfies ||G+T||=||G||+||T||. In the first chapter we exhibit some examples of Daugavet centers among the set of weighted composition operators acting on function spaces, such as the space C(K) of continuous functions on a perfect compact space K, the disk algebra, or the space of Lipschitz functions on a complete metric space. In the second chapter we study a weaker property, that is to say the equation ||G+T||=||G||+||T|| is now fulfilled for a smaller class of rank-1 operators, and such an operator G is called an almost Daugavet center. We give a characterization of almost Daugavet centers in terms of canonical l1-type and thickness of the operator G. This leads to a characterization of the class of operators fixing a copy of l1.The last chapter’s point of view is quite different: we do not look anymore for a G that “maximizes” the norm of G+T for every compact operator T, but we try to find a compact operator T that minimizes ||G+T||. In other words, we want to estimate the essential norm of G. We complete some results concerning weighted composition operators acting between different Hardy spaces.

Page generated in 0.0943 seconds