• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 9
  • 9
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Kennwertorientierte Synthese taktzeitoptimierter Bewegungsgesetze zur effizienten Prozessoptimierung

Speicher, Thorsten, Berger, Maik 05 July 2019 (has links)
Der zunehmende Trend zur Flexibilisierung in engem Zusammenhang mit Industrie 4.0 gewinnt im industriellen Umfeld immer stärker an Bedeutung. Um dem Konkurrenzdruck in diesem Bereich standhalten zu können, sind Unternehmen gezwungen, sich durch innovative Ansätze vom Wettbewerb abzuheben. In diesem Beitrag wird eine Vorgehensweise zur effektiven Optimierung von Bewegungsprofilen vorgestellt. Dazu wird die Auswahl bzw. Synthese von Bewegungsfunktionen unterstützt, die das komplette Leistungsvermögen der Maschine ausnutzen, um Taktzeiten zu reduzieren und folglich die Ausbringungsmenge zu erhöhen. Zudem bietet der Ansatz die Möglichkeit zur softwareseitigen Implementierung in eine SPS, um online produkt- oder prozessspezifische Bewegungsprofile zu optimieren.
2

Computational solutions of a family of generalized Procrustes problems

Fankhänel, Jens, Benner, Peter 02 June 2014 (has links) (PDF)
We consider a family of generalized Procrustes problems. In this class of problems, one aims at aligning a set of vectors to a given second set of vectors. The distance between both sets is measured in the q norm, and for the alignment, isometries with respect to the p norm are allowed. In contrast to the classical Procrustes problem with p = q = 2, we allow p and q to differ. We will see that it makes a difference whether the problem is real or cast over the complex field. Therefore, we discuss the solutions for p = 2 separately for these cases. We show that all the real cases can be solved efficiently. Most of the complex cases can up to now only be solved approximately in polynomial time, but we show the existence of polynomial time algorithms for q ∈ {2, 4, ∞}. Computational experiments illustrate the suggested algorithms.
3

Computational solutions of a family of generalized Procrustes problems

Fankhänel, Jens, Benner, Peter 30 June 2014 (has links) (PDF)
We consider a family of generalized Procrustes problems. In this class of problems, one aims at aligning a set of vectors to a given second set of vectors. The distance between both sets is measured in the q norm, and for the alignment, isometries with respect to the p norm are allowed. In contrast to the classical Procrustes problem with p = q = 2, we allow p and q to differ. We will see that it makes a difference whether the problem is real or cast over the complex field. Therefore, we discuss the solutions for p = 2 separately for these cases. We show that all the real cases can be solved efficiently. Most of the complex cases can up to now only be solved approximately in polynomial time, but we show the existence of polynomial time algorithms for q ∈ {2, 4, ∞}. Computational experiments illustrate the suggested algorithms.
4

The 3σ-rule for outlier detection from the viewpoint of geodetic adjustment

Lehmann, Rüdiger 21 January 2015 (has links) (PDF)
The so-called 3σ-rule is a simple and widely used heuristic for outlier detection. This term is a generic term of some statistical hypothesis tests whose test statistics are known as normalized or studentized residuals. The conditions, under which this rule is statistically substantiated, were analyzed, and the extent it applies to geodetic least-squares adjustment was investigated. Then, the efficiency or non-efficiency of this method was analyzed and demonstrated on the example of repeated observations. / Die sogenannte 3σ-Regel ist eine einfache und weit verbreitete Heuristik für die Ausreißererkennung. Sie ist ein Oberbegriff für einige statistische Hypothesentests, deren Teststatistiken als normierte oder studentisierte Verbesserungen bezeichnet werden. Die Bedingungen, unter denen diese Regel statistisch begründet ist, werden analysiert. Es wird untersucht, inwieweit diese Regel auf geodätische Ausgleichungsprobleme anwendbar ist. Die Effizienz oder Nichteffizienz dieser Methode wird analysiert und demonstriert am Beispiel von Wiederholungsmessungen.
5

The 3σ-rule for outlier detection from the viewpoint of geodetic adjustment

Lehmann, Rüdiger January 2013 (has links)
The so-called 3σ-rule is a simple and widely used heuristic for outlier detection. This term is a generic term of some statistical hypothesis tests whose test statistics are known as normalized or studentized residuals. The conditions, under which this rule is statistically substantiated, were analyzed, and the extent it applies to geodetic least-squares adjustment was investigated. Then, the efficiency or non-efficiency of this method was analyzed and demonstrated on the example of repeated observations. / Die sogenannte 3σ-Regel ist eine einfache und weit verbreitete Heuristik für die Ausreißererkennung. Sie ist ein Oberbegriff für einige statistische Hypothesentests, deren Teststatistiken als normierte oder studentisierte Verbesserungen bezeichnet werden. Die Bedingungen, unter denen diese Regel statistisch begründet ist, werden analysiert. Es wird untersucht, inwieweit diese Regel auf geodätische Ausgleichungsprobleme anwendbar ist. Die Effizienz oder Nichteffizienz dieser Methode wird analysiert und demonstriert am Beispiel von Wiederholungsmessungen.
6

Computational solutions of a family of generalized Procrustes problems

Fankhänel, Jens, Benner, Peter 02 June 2014 (has links)
We consider a family of generalized Procrustes problems. In this class of problems, one aims at aligning a set of vectors to a given second set of vectors. The distance between both sets is measured in the q norm, and for the alignment, isometries with respect to the p norm are allowed. In contrast to the classical Procrustes problem with p = q = 2, we allow p and q to differ. We will see that it makes a difference whether the problem is real or cast over the complex field. Therefore, we discuss the solutions for p = 2 separately for these cases. We show that all the real cases can be solved efficiently. Most of the complex cases can up to now only be solved approximately in polynomial time, but we show the existence of polynomial time algorithms for q ∈ {2, 4, ∞}. Computational experiments illustrate the suggested algorithms.
7

Computational solutions of a family of generalized Procrustes problems

Fankhänel, Jens, Benner, Peter 30 June 2014 (has links)
We consider a family of generalized Procrustes problems. In this class of problems, one aims at aligning a set of vectors to a given second set of vectors. The distance between both sets is measured in the q norm, and for the alignment, isometries with respect to the p norm are allowed. In contrast to the classical Procrustes problem with p = q = 2, we allow p and q to differ. We will see that it makes a difference whether the problem is real or cast over the complex field. Therefore, we discuss the solutions for p = 2 separately for these cases. We show that all the real cases can be solved efficiently. Most of the complex cases can up to now only be solved approximately in polynomial time, but we show the existence of polynomial time algorithms for q ∈ {2, 4, ∞}. Computational experiments illustrate the suggested algorithms.:1. Introduction 2. The (lp, lq)-Procrustes problem 3. Optimization methods for the remaining cases with p not equal to 2 4. The one-dimensional complex optimization problems with p, q unequal to 2 5. Conclusions
8

Metrical Problems in Minkowski Geometry

Fankhänel, Andreas 19 October 2012 (has links) (PDF)
In this dissertation we study basic metrical properties of 2-dimensional normed linear spaces, so-called (Minkowski or) normed planes. In the first chapter we introduce a notion of angular measure, and we investigate under what conditions certain angular measures in a Minkowski plane exist. We show that only the Euclidean angular measure has the property that in an isosceles triangle the base angles are of equal size. However, angular measures with the property that the angle between orthogonal vectors has a value of pi/2, i.e, a quarter of the full circle, exist in a wider variety of normed planes, depending on the type of orthogonality. Due to this we have a closer look at isosceles and Birkhoff orthogonality. Finally, we present results concerning angular bisectors. In the second chapter we pay attention to convex quadrilaterals. We give definitions of different types of rectangles and rhombi and analyse under what conditions they coincide. Combinations of defining properties of rectangles and rhombi will yield squares, and we will see that any two types of squares are equal if and only if the plane is Euclidean. Additionally, we define a ``new\'\' type of quadrilaterals, the so-called codises. Since codises and rectangles coincide in Radon planes, we will explain why it makes sense to distinguish these two notions. For this purpose we introduce the concept of associated parallelograms. Finally we will deal with metrically defined conics, i.e., with analogues of conic sections in normed planes. We define metric ellipses (hyperbolas) as loci of points that have constant sum (difference) of distances to two given points, the so-called foci. Also we define metric parabolas as loci of points whose distance to a given point equals the distance to a fixed line. We present connections between the shape of the unit ball B and the shape of conics. More precisely, we will see that straight segments and corner points of B cause, under certain conditions, that conics have straight segments and corner points, too. Afterwards we consider intersecting ellipses and hyperbolas with identical foci. We prove that in special Minkowski planes, namely in the subfamily of polygonal planes, confocal ellipses and hyperbolas intersect in a way called Birkhoff orthogonal, whenever the respective ellipse is large enough.
9

Metrical Problems in Minkowski Geometry

Fankhänel, Andreas 07 June 2012 (has links)
In this dissertation we study basic metrical properties of 2-dimensional normed linear spaces, so-called (Minkowski or) normed planes. In the first chapter we introduce a notion of angular measure, and we investigate under what conditions certain angular measures in a Minkowski plane exist. We show that only the Euclidean angular measure has the property that in an isosceles triangle the base angles are of equal size. However, angular measures with the property that the angle between orthogonal vectors has a value of pi/2, i.e, a quarter of the full circle, exist in a wider variety of normed planes, depending on the type of orthogonality. Due to this we have a closer look at isosceles and Birkhoff orthogonality. Finally, we present results concerning angular bisectors. In the second chapter we pay attention to convex quadrilaterals. We give definitions of different types of rectangles and rhombi and analyse under what conditions they coincide. Combinations of defining properties of rectangles and rhombi will yield squares, and we will see that any two types of squares are equal if and only if the plane is Euclidean. Additionally, we define a ``new\'\' type of quadrilaterals, the so-called codises. Since codises and rectangles coincide in Radon planes, we will explain why it makes sense to distinguish these two notions. For this purpose we introduce the concept of associated parallelograms. Finally we will deal with metrically defined conics, i.e., with analogues of conic sections in normed planes. We define metric ellipses (hyperbolas) as loci of points that have constant sum (difference) of distances to two given points, the so-called foci. Also we define metric parabolas as loci of points whose distance to a given point equals the distance to a fixed line. We present connections between the shape of the unit ball B and the shape of conics. More precisely, we will see that straight segments and corner points of B cause, under certain conditions, that conics have straight segments and corner points, too. Afterwards we consider intersecting ellipses and hyperbolas with identical foci. We prove that in special Minkowski planes, namely in the subfamily of polygonal planes, confocal ellipses and hyperbolas intersect in a way called Birkhoff orthogonal, whenever the respective ellipse is large enough.:1 Introduction 2 On angular measures 3 Types of convex quadrilaterals 4 On conic sections

Page generated in 0.0566 seconds