891 |
Cycling of Bioavailable Carboxyl-Rich Alicyclic Molecules and Carbohydrates in Baffin BayMcKee, Kayla 13 July 2023 (has links)
At ~662 gigatonnes of carbon (GtC), marine dissolved organic matter (DOM) is the largest reduced pool of actively cycling carbon and nitrogen in the oceans1. Operationally defined as smaller than 0.1µm in size, this carbon reservoir comprises all non-living organic matter smaller than a bacterial cell and comprises organic colloids and molecules spanning as a continuum of sizes ranging from marine viruses and large macromolecules (e.g. DNA, enzymes) to small organic molecules (e.g. polymers and monomers)2. With deep apparent 14C-ages ranging between 4900-6400 ybp 3,4, marine DOM is anomalously old given timescales of global ocean ventilation (1000-1500 years). The great age of DOM has remained one of the most elusive lines of scientific inquiry in Chemical Oceanography for decades. The size and molecular composition of DOM has been shown to be a key variable in determining its biological reactivity (e.g. cycling rate) and long-term persistence in the deep ocean5,6.
Despite the importance of DOM in the marine carbon and nitrogen cycles, we lack a detailed understanding of the molecular composition of DOM. Due to the high concentration of salts in seawater relative to DOM, it is difficult to analyze the molecular composition of seawater with conventional chemical- or size- fractionation methods without introducing bias (i.e. isolating only hydrophobic and/or high molecular weight DOM). In fact, it is commonly reported that >80% of DOM remains uncharacterized at the molecular level (e.g. not readily identifiable as an individual known biomolecule)5. Nuclear magnetic resonance (NMR) spectroscopy has been used as a tool for several decades to describe the composition of marine DOM isolates7. For example, 13C-NMR of major high molecular weight DOM functional groups at the molecular-level demonstrated that DOM is largely made up of reactive polysaccharides with low aromaticity compared to terrestrial DOM8. To date, all marine DOM NMR measurements have been made on size-fractionated DOM or chemically-fractionated (e.g. solid phase extracted) DOM isolates. In this thesis, I report the first Proton (1H) NMR composition of total seawater DOM from seawater samples collected from 10 stations in Baffin Bay aboard the CCGS Amundsen (2019). Samples were measured using 1H-NMR at uOttawa following a novel water suppression method established by Lam and Simpson9.
The use of this method has allowed for the first molecular composition assessment of total seawater DOM to be measured (e.g. without any chemical or size fractionation). I report the % relative abundance of individual biomarkers and determine molar concentrations of two compound classes of interest. These results are shown in Ocean Data View section plots, and are listed within appendix tables, to provide a comprehensive depiction of the changing concentrations of dissolved organic carbon (DOC), total carbohydrates (TCHO), and carboxyl-rich alicyclic molecules (CRAM). In this thesis, I explore changes in the abundance of these unique DOM compound classes and discuss how the composition of DOM directly determines its bioavailability and thus cycling in Baffin Bay 5. The core objective of my thesis was to measure DOM concentrations for TCHO and CRAM, as well as to calculate the production and removal of these key DOM compounds in Baffin Bay due to either physical and/or biological processes. We found that the concentration of both TCHO and CRAM decreased with depth throughout Baffin Bay. This is consistent with previous work suggesting the rapid cycling of carbohydrates, however it contradicts the current paradigm of CRAM cycling. Our results indicate between 21-43% of CRAM produced in the surface is subsequently removed at depth. Rapid cycling of a surface CRAM population suggests that not all CRAM can be considered recalcitrant DOM
We live in a time of unprecedented global change. The Arctic Ocean is warming at a rate at least four times faster than the global average10. The impact of a rapidly warming, freshening and increasingly acidified Arctic Ocean on the biogeochemistry of DOM remains unknown. It is imperative that more DOM research be conducted as early as possible in order to better understand these impacts and inform future research directions. The distribution and cycling of CRAM in Baffin Bay provide novel and fundamental knowledge of DOM cycling in a key Arctic region, but could also potentially occur throughout the global ocean. Such data will no doubt be of use in informing future iterations of Earth System Climate models seeking to forecast how the marine carbon cycle will respond to global change.
|
892 |
NMR Studies of the GCN4 Transcription Factor and Hox DNA Consensus SequencesCrawley, Timothy January 2023 (has links)
The conversion of genetic information into functional RNA and protein is of fundamental importance to all known life forms. In cellular organisms, this hinges on the interaction of double stranded DNA and the transcription factor class of proteins. Substantial progress in the fields of biochemistry and genomics have made the identification of transcription factor binding sites and the resultant change in transcriptional output relatively routine. However, fully understanding this central life process requires knowing not only where transcription factors bind DNA, but why and how.
These questions are approached here using solution state NMR spectroscopy and the statistical technique of bootstrap aggregation in order to: i) glean biologically relevant insights into the dynamics of the GCN4 transcription factor from NMR relaxation experiments; ii) examine the influence of electrostatics on the structure of GCN4 in the absence of DNA; iii) analyze the conformational state of several Hox transcription factor DNA binding sites. NMR spectroscopy capitalizes on connections between electromagnetism and the quantum mechanical property of nuclear spin angular momentum to study the structure of molecules. Application of NMR relaxation experiments provides further information on molecular structure and dynamics. When performed in solution, the data generated by this technique occurs in conditions more similar to those found within a cell than other approaches used in structural biology.
However, the biological relevance of any insights derived from solution state NMR relaxation experiments depends on the application of an appropriate model for nuclear spin relaxation. Typically, this involves applying a statistical test to select the best model from among several candidates in the model-free formalism. Chapter 3 uses 15N relaxation data collected on the basic leucine zipper (bZip) domain of the GCN4 transcription factor to detail the potential problems and model selection errors that arise from this approach, and presents the alternative method of bootstrap aggregation. Applying this statistical technique allowed for the generation of multimodel inferences about the internal motions and rigidity of the basic region of GCN4, enhancing the likelihood of their biological relevance.
The results presented in Chapter 3 further confirmed the presence of nascent helices in the generally disordered basic region of the GCN4 bZip domain. Interestingly, when complexed with appropriate DNA substrate, this region assumes a fully α-helical conformation. A long standing hypothesis assumes the inability of the basic region to form an α-helix in the absence of DNA arises, in part, due to repulsion between its charged amino acids. This hypothesis is tested in Chapter 4 using NMR relaxation experiments performed in solutions containing either increased or decreased concentrations of salt. Surprisingly, screening the electrostatic repulsion between charged residues using higher levels of salt had no discernible effect on the structure or dynamics of the basic region.
Chapter 5 examines the other side of the interaction between DNA and transcription factors. Here, previous work performed with the Hox family of transcription factors indicated the conformational state of DNA has an important role in enhancing the specificity with which Hox proteins bind certain sequences. In particular, the geometry of the DNA minor groove strongly influences the recruitment of appropriate Hox transcription factors. This relationship is examined using solution state NMR to study four Hox DNA binding sequences. The binding affinity between each of these sequences and the Hox protein AbdB was previously shown to correlate with the native unbound state of the DNA. The two sequences predicted to have native minor groove widths similar to those of the bound DNA had higher affinity for AbdB than those that deformed upon binding. Though mixed, the results of NMR experiments generally support the predicted structures, particularly for the high affinity sequences, indicating a single pronounced narrowing of the minor groove.
Taken together, the results presented here illustrate the complex interactions underpinning the appropriate binding of DNA and transcription factors. It further highlights the need to study the structure and dynamics of both DNA and protein, as well as that of the bound complex, in order to fully understand how and why specific sequences are bound in response to stimuli.
|
893 |
Prospects for spin squeezing in nuclear magnetic resonance dark matter searchesBoyers, Eric 16 June 2023 (has links)
Direct detection of dark matter remains an important outstanding problem since abundant astrophysical evidence points towards its existence, but no experiment has succeeded in detecting it. Axions and axion-like-particles are some of the most compelling candidates for dark matter given their appearance in many theories of physics beyond the Standard Model and their relatively unexplored parameter space compared to other candidates. Recently, the Cosmic Axion Spin Precession Experiment-Electric (CASPEr-e) has used nuclear magnetic resonance (NMR) to search for effective magnetic fields created by axionic dark matter. By decreasing technical noise sources, CASPEr-e is projected to reach the standard quantum limit where spin projection noise is the dominant noise source limiting sensitivity. However, some axion models predict axion couplings to normal matter that would be too small for even a quantum limited CASPEr-e experiment to detect. This creates a need for surpassing the spin projection noise limit in NMR dark matter searches.
In this thesis, I explore the prospects for surpassing the quantum limit in NMR by using spin squeezed states, entangled states with variance in one projection reduced below the standard quantum limit. First, I propose an experimental scheme for generating squeezed states by coupling the spins to an off-resonant circuit to create a One-Axis-Twist Hamiltonian. Then, using exact results and numerical simulations, I determine the amount of squeezing that can be achieved given decoherence and noise. Next, I perform modeling to show that squeezing can accelerate dark matter searches despite earlier results that argued squeezing cannot improve experimental sensitivity when subject to decoherence. Finally, I apply these results to the CASPEr-e experiment and show that at axion frequencies near 100MHz, squeezing can speed up the experiment by a factor of up to 30, corresponding to a sensitivity improvement by a factor of over 5.
|
894 |
Advances in Integrative Modeling for Proteins: Protein Loop Structure Prediction and NMR Chemical Shift PredictionZhang, Lichirui January 2024 (has links)
This thesis encompasses two studies on the application of computational techniques, including deep learning and physics-based methods, in the exploration of protein structure and dynamics.
In Chapter 1, I will introduce the background knowledge. Chapter 2 describes the development of a deep learning method for protein loop modeling. We introduce a fast and accurate method for protein loop structure modeling and refinement using deep learning. This method, which is both fast and accurate, integrates a protein language model, a graph neural network, and attention-based modules to predict all-atom protein loop structures from sequences. Its accuracy was validated on benchmark datasets CASP14 and CAMEO, showing performance comparable to or better than the state-of-the-art method, AlphaFold2.
The model’s robustness against loop structures outside of the training set was confirmed by testing on datasets after removing high-identity templates and train- ing set homologs. Moreover, it demonstrated significantly lower computational costs compared to existing methods. Application of this method in real-world scenarios included predicting anti- body complementarity-determining regions (CDR) loop structures and refining loop structures in inexact side-chain environments. The method achieved sub-angstrom or near-angstrom accuracy for most CDR loops and notably enhanced the quality of many suboptimal loop predictions in in- exact environments, marking an advancement in protein loop structure prediction and its practical applications.
Chapter 3 presents a collaborative study that employs nuclear magnetic resonance (NMR) experiments, molecular dynamics (MD), and hybrid quantum mechanics/molecular mechanics (QM/MM) calculations to investigate protein conformational dynamics across varying temperatures. NMR chemical shifts provide a sensitive probe of protein structure and dynamics. Prediction of shifts, and therefore interpretation of shifts, particularly for the frequently measured amidic 15N sites, remains a tall challenge.
We demonstrate that protein ¹⁵N chemical shift prediction from QM/MM predictions can be improved if conformational variation is included via MD sampling, focusing on the antibiotic target, E. coli Dihydrofolate reductase (DHFR). Variations of up to 25 ppm in predicted ¹⁵N chemical shifts are observed over the trajectory. For solution shifts, the average of fluctuations on the low picosecond timescale results in a superior prediction to a single optimal conformation. For low-temperature solid-state measurements, the histogram of predicted shifts for locally minimized snapshots with specific solvent arrangements sampled from the trajectory explains the heterogeneous linewidths; in other words, the conformations and associated solvent are ‘frozen out’ at low temperatures and result in inhomogeneously broadened NMR peaks. We identified conformational degrees of freedom that contribute to chemical shift variation. Backbone torsion angles show high amplitude fluctuations during the trajectory on the low picosecond timescale.
For a number of residues, including I60, 𝝍 varies by up to 60o within a conformational basin during the MD simulations, despite the fact that I60 (and other sites studied) are in a secondary structure element and remain well folded during the trajectory. Fluctuations in 𝝍 appear to be compensated by other degrees of freedom in the protein, including 𝝓 of the succeeding residue, resulting in “rocking” of the amide plane with changes in hydrogen bonding interactions. Good agreement for both room-temperature and low-temperature NMR spectra provides strong support for the specific approach to conformational averaging of computed chemical shifts.
|
895 |
Interaction of Water with the Proton Exchange Fuel Cell MembraneKalapos, Thomas Lawrence 06 April 2007 (has links)
No description available.
|
896 |
Molecular Dynamics of Folded and Disordered Polypeptides in Comparison with Nuclear Magnetic Resonance MeasurementYu, Lei 15 August 2018 (has links)
No description available.
|
897 |
Studies on Inclusion of a Thiol Flavor Constituent and Fatty Acids with beta-CyclodextrinParker, Kevin M. January 2008 (has links)
No description available.
|
898 |
DOSE-DEPENDENT EFFECTS OF OXYGEN ON METABOLISM IN RAT CORTICO-HIPPOCAMPAL BRAIN TISSUE SLICESHOLLYFIELD, JENNIFER LYNNE 22 May 2009 (has links)
No description available.
|
899 |
Synthesis and Characterization of Carbohydrate MimicsBeagle, Lucas Kyle 08 September 2008 (has links)
No description available.
|
900 |
Spectroscopic Studies of a Series of Co(II) ß-diketonatesBaum, Robert Ray, Jr. 29 November 2016 (has links)
No description available.
|
Page generated in 0.0936 seconds