111 |
Cartographie et analyse de variations épigénomiques naturelles chez la levure Saccharomyces cerevisiae / Mapping and analysis of natural epigenomic variations in the yeast Saccharomyces cerevisiaeFilleton, Fabien 27 November 2015 (has links)
L'épigénome est défini par l’ensemble de l’information chromatinienne autre que celle fournie par la séquence ADN. Au sein d'une même espèce et pour un type cellulaire donné, chaque individu présente des caractéristiques particulières de l'épigénome. Les épi-polymorphismes, définis comme étant les différences inter-individus de marques chromatiniennes, sont encore partiellement caractérisés et peuvent être liés aux phénotypes de chacun. La première partie de mon travail a été d'identifier et d'interpréter chez S.cerevisiae l'impact des épi-polymorphismes de modification des queues d'histones. Pour y parvenir, j'ai cartographié les épigénomes de cinq modifications différentes (3 acétylations et 2 méthylations) chez trois souches de levures issues de différents isolats naturels. Par une méthode de ChIP-seq et le développement d'un outil informatique, j'ai comparé les épigénomes de ces souches à l'échelle de nucléosomes individuels. L'étude des propriétés génomiques des épi-polymorphismes m'a alors permis de découvrir certaines caractéristiques encore inconnues et décrites dans ce manuscrit.Par ailleurs, j'ai voulu aborder le lien entre épi-polymorphismes et réponse transcriptionnelle à l'environnement. Pour cela, j'ai construit un jeu de souches mutantes dérivées de souches naturelles, où certains épi-polymorphismes ne peuvent plus être maintenus. J'ai analysé par RNA-seq les transcriptomes de certaines de ces souches avant et après un changement environnemental. Malheureusement, l'analyse des résultats a révélé que la qualité des données ne permettent pas d'établir le lien recherché mais les outils mis en place sont désormais disponibles.J'ai enfin étudié la dynamique d'évolution d'un épigénome en présence ou en l'absence de pression de sélection. Pour cela, j'ai suivi une modification d'histone (l'acétylation de la lysine 14 de l'histone H3) chez la levure pendant 1.000 générations dans deux conditions d'évolution expérimentale différentes : l'une sélective, l'autre neutre. J'ai mis en évidence des différences remarquables et inattendues entre ces deux régimes évolutifs. Des études mécanistiques détaillées restent à faire pour caractériser la nature et les propriétés de ces différences. / Epigenome is defined as the entire chromatin information other than the DNA sequence. Within a given species and for a given cell type, each indivual has specific epigenomic characteristics. Epigenomic differences between individuals (refered to as 'epi-polymorphisms') remain poorly characterized, although cases were reported where they could be linked to phenotypic differences. In my thesis, I used the model organism S. cerevisiae to identify histone modification epi-polymorphisms and study their biological impact. I profiled the epigenome of five different histone modifications (3 acetylations and 2 methylations) in three natural yeast strains. By ChIP-seq methods and software developments, I compared these strains at single-nucleosome resolution and discovered novel characteristics of these epi-polymorphisms which are described in this manuscript.Furthermore, I constructed a research framework to investigate the link between epi-polimorphisms and response to environmental cues. For this, I built a set of mutant strains derived from natural strains but where some epi-polymorphisms can no longer be maintained. I analyzed by RNA-seq the transcriptomes of some of these mutant strains before and after an environmental shift. Unfortunately, the quality of this initial data produced was not sufficient to link epi-polymorphisms to differntial responses, but the strain resources remain available for further investigations. Finally, I studied the evolutionary dynamics of epi-polymorphisms in the presence or absence of selection pressure. To do so, I followed the evolution of H3K14ac for 1.000 generations under two conditions of yeast experimental evolution ( selective or neutral). Marked differences were observed between the two regimes, revealing unexpected consequences of the presence of selection. Further mechanistic studies will be needed to elucidate the full properties of these differences.
|
112 |
Regulation of replication dependent nucleosome assemblyGopinathan Nair, Amogh 04 1900 (has links)
Chez les cellules humaines, environ 2 mètres d'ADN est compacté dans le noyau cellulaire par la formation d'une structure nucléoprotéique appelée chromatine. La chromatine est composée d'ADN enroulé à la surface d'un octamère de core histones pour former une structure appelée nucléosome. La structure de la chromatine doit être altérée afin d'accéder à l'information génétique pour sa réplication, sa réparation et sa transcription. La duplication de la chromatine lors de la phase S est cruciale pour la prolifération et la survie des cellules. Cette duplication de la chromatine requière une ségrégation des histones parentales, mais aussi une déposition d'histones néo-synthétisées sur l'ADN. Ces deux réactions résultent en formation de chromatine dès qu'une quantité suffisante d'ADNest générée par la machinerie de réplication. De plus, en raison de conditions intrinsèques et extrinsèques, la machinerie de réplication est souvent confrontée à de nombreux obstacles, sous la forme de lésions à l'ADN qui interfèrent avec la réplication de l'ADN. Sous ces conditions, l'assemblage de nucléosomes et la synthèse d'histones sont étroitement régulées afin d'éviter la production d'un excès d'histones et leurs nombreuses conséquences nuisibles à la cellule.
"Chromatin Assembly Factor 1" (CAF-1) est responsable de la déposition initiale des molécules d'H3 et H4 derrière les fourches de réplication. Pour permettre sa fonction d'assemblage de chromatine, CAF-1 est localisée aux fourches de réplication en vertue de sa liaison à une protéine appelée Proliferating Cell Nuclear Antigen (PCNA). Cependant, le mécanisme moléculaire par lequel CAF-1 exerce sa function demeure mal compris.
Dans le deuxième chapitre de ma thèse, j'ai exploré comment CAF-1 se lie à PCNA d'une manière distincte des nombreux autres partenaires de PCNA. Grâce à nos collaborateurs, des études de crystallographie ont démontré que CAF-1 se lie à PCNA grâce à une interaction non-canonique entre le "PCNA Interaction Peptide" (PIP) de CAF-1 et une interaction de type cation-pi (π). Nous avons aussi montré qu'une substitution d'un seul acide aminé, unique au PIP de CAF-1, abolit son interaction avec PCNA et sa capacité d'assemblage de nuclésomes. Nous avons aussi montré que le PIP de CAF-1 est situé à l'extrémité C-terminale d'une très longue hélice alpha qui est conservée à travers l'évolution parmi de nombreux homologues de CAF-1. Nos études biophysiques ontmontré que cette longue hélice alpha forme des structures oligomériques de type "coiled-coil", ce qui suggère certains mécanismes pour dédier un anneau de PCNA à l'assemblage de chromatine et ce, en dépit des nombreux intéracteurs de PCNA présents aux fourches de réplication.
Dans le troisième chapitre de ma thèse, nos collaborateurs et moi-même avons étudié les mécanismes moléculaires par lesquels les cellules parviennent à maintenir un équilibre délicat entre la synthèse d'ADN et la synthèse d'histones et ce, même en présence de lésions à l'ADN qui interfèrent avec la réplication. Chez Saccharomyces cerevisiae, nous avons montré que les kinases de réponse au dommage à l'ADN, Mec1/Tel1 et Rad53, inhibent la transcription des gènes d'histones en réponse aux liaisons à l'ADN qui interfèrent avec la réplication. Nous avons montré que la répression des gènes d'histones induite par le dommage à l'ADN est médiée par une phosphorylation extensive de Hpc2, l'une des sous-unités du complexe "Histone Gene Repressor" (HIR). Hpc2 contient un domaine qui se lie à l'histone H3. À partir de la structure d'Hpc2, nous avons généré des mutants qui, d'après la structure, sont incapables de se lier à l'histone H3. Nos résultats montrent que l'accumulation d'histones en excès provoquée par le dommage à l'ADN entraîne la phosphorylation d'Hpc2 and la liaison de l'excès d'histone H3 à Hpc2. Ces résultats suggèrent que la répression transcriptionnelle des gènes d'histones induite par le dommage à l'ADN est médiée, du moins en partie, par une simple rétroaction négative impliquant la liaison des histones en excès à la sous-unité Hpc2 du complexe HIR. / In human cells, roughly 2 meters of DNA is compacted into the cell nucleus by the formation of a nucleoprotein complex called chromatin. Chromatin is composed of DNA wrapped around an octamer of core histones to form so-called nucleosomes. Chromatin structure needs to be altered to access genetic information for processes like replication, repair and transcription. Duplication of chromatin during S phase is vital for cell proliferation and viability. Chromatin duplication requires segregation of parental histones, but also deposition of newly synthesized histones onto DNA. This process results in packaging all of the synthesized DNA with histones to form nucleosomes as soon as enough nascent DNA has emerged from the replication machinery. Moreover, as a result of intrinsic and extrinsic conditions, the replication machinery often encounters DNA lesions that impede the continuous synthesis of DNA. Under these conditions, nucleosome assembly and histone synthesis are tightly regulated to prevent the production of an excess of histone proteins and their deleterious consequences.
Chromatin Assembly Factor-1 (CAF-1) performs the initial step in chromatin assembly by depositing newly synthesized histone H3-H4 molecules behind replication forks. In order to perform its chromatin assembly function, CAF-1 localizes to DNA replication forks by binding directly to a protein known as the Proliferating Cell Nuclear Antigen (PCNA). However, the exact molecular mechanism by which this is achieved remains poorly understood.
Through the second chapter of my thesis, I have explored how CAF-1 binds PCNA in a manner that is distinct from the numerous other binding partners of PCNA. With the help of our collaborators, crystallographic studies demonstrated that CAF-1 binds to PCNA by virtue of a non-canonical PCNA interaction peptide (PIP) and a cation-pi (π) interaction. We have also shown that a single amino acid substitution, unique to the PIP of CAF-1, disrupts its binding to PCNA and chromatin assembly activity. We found that the CAF-1 p150 PIP resides at the extreme C-terminus of a long alpha helix that is evolutionarily conserved among numerous homologues of CAF-1. Our biophysical studies showed that this long alpha-helix is capable of forming higher-order coiled coils, which suggests mechanisms to dedicate one PCNA ring for chromatin assembly despite the presence of multiple PCNA interactors at replication forks.
In the third chapter of this thesis, our collaborators and I have addressed the crucial molecular mechanisms by which cells maintain a delicate balance between DNA and histone synthesis despite the presence of DNA lesions that interfere with replication. In Saccharomyces cerevisiae, we showed that the DNA damage response kinases Mec1/Tel1 and Rad53 inhibit histone gene transcription when DNA lesions block DNA replication. We also showed that this repression is mediated by phosphorylation of the Hpc2 subunit of the Histone Gene Repressor complex (HIR). Hpc2 contains a domain that directly binds to histone H3. Interestingly, structure-based mutants of Hpc2 predicted to be incapable of binding H3 are defective in DNA damage-induced transcriptional repression of histone genes in response to DNA damage during replication. Our results indicate that the accumulation of excess histones caused by DNA damage during S phase triggers extensive phosphorylation of Hpc2 and binding of excess H3 to Hpc2. This suggests that DNA damage-induced repression of histone genes is mediated, at least in part, by a simple negative feedback triggered by binding of excess histones to the Hpc2 subunit of the HIR complex.
|
Page generated in 0.0263 seconds