• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Distributed Beamforming and Nullforming: Frequency Synchronization Techniques, Phase Control Algorithms, and Proof-Of-Concept

Rahman, Muhammad Mahboob Ur 01 July 2013 (has links)
We describe a set of fundamental contributions to the design, analysis and implementation of distributed MIMO techniques in wireless networks. The main idea behind distributed MIMO is to organize groups of wireless transmitters and receivers into distributed antenna arrays to cooperatively achieve beamforming and spatial multiplexing gains in ad-hoc wireless networks. This technique promises orders-of-magnitude increases in wireless data rates, however it presupposes very stringent timing, carrier frequency and phase synchronization of the RF signals between the cooperating nodes in the array. Specifically in this dissertation, we consider a sub-class of distributed MIMO systems called distributed MISO systems. In other words, we focus on distributed transmit arrays, wherein a group of N transmitters organize themselves into a virtual antenna array (VAA) to talk to a single-antenna receiver. While distributed MIMO involves virtual arrays on both transmit and receive ends, transmit arrays require real-time coordination, and therefore present unique challenges as compared to receive arrays. We explore two specific MISO techniques: i) distributed beamforming and ii) distributed nullforming in this work. Beamforming involves focusing transmitted energy selectively in the direction of an intended receiver, and nullforming involves forming a "null" i.e. having the transmissions of the different array nodes cancel each other completely at a desired location. Beamforming has the potential of substantially increasing the energy efficiency of wireless communications, while nullforming allows multiple nodes to communicate simultaneously over the same frequency band by carefully canceling the resulting interference. Beamforming and nullforming can also be thought of as basic building blocks for more sophisticated MIMO techniques. In this work, we present a set of frequency synchronization and phase control algorithms to establish and maintain a VAA for distributed beamforming and nullforming. For frequency-locking, we propose a novel distributed consensus-based algorithm. For a VAA with two nodes, we show that our algorithm achieves frequency lock globally and exponentially with a residual phase disparity that is either 0 or pi. This is in contrast to PLL-like algorithms that only achieve lock locally. Next, we describe in detail the key ideas behind an implementation of distributed beamforming on a GNU-radio/USRP based software-defined radio (SDR) platform. We introduce a novel DSP-centric Master-Slave (MS) architecture that enables the use of low-rate DSP algorithms for synchronization of high frequency RF signals. We describe the evolution of our implementation from initially using analog signaling with Costas loops/PLLs for frequency offset estimation and compensation, to a digital signaling scheme that uses extended Kalman filters (EKF) to track and compensate for frequency offsets. The EKF-based frequency locking scheme is well-suited for packet wireless networks, e.g., WiFi, ZigBee. We next consider phase control algorithms for forming beams and nulls with a VAA. In our experimental implementation, we have used several variants of classical 1-bit feedback control algorithm during different stages of our work. 1-bit feedback algorithm is an iterative gradient-ascent algorithm which causes the VAA nodes' signals to add constructively at a designated receiver. We present results to demonstrate the gains in the RSS at the receiver due to beamforming in the real-time settings. We also describe a distributed gradient-descent based algorithm that causes VAA nodes to achieve a null at a designated null target. We provide detailed convergence analysis for the proposed null-steering algorithm. This analysis shows that the algorithm always achieves practical null at null-target; moreover, all the spurious stationary points are locally unstable. Finally, we conclude by providing suggestions for future work.
2

Theory and implementation of scalable, retrodirective distributed arrays

Peiffer, Benjamin Michael 01 May 2017 (has links)
A Distributed Multi-Input Multi-Output (DMIMO) system consists of many transceivers coordinating themselves into a "virtual antenna array" in order to emulate MIMO capabilities. In recent years, the field of research investigating DMIMO Communications has grown substantially. DMIMO systems offer all of the same benefits of standard MIMO systems on a larger scale because arrays are not limited by the physical constraint of placing many antennas on a single transceiver. This additional benefit does come at a cost, however. Since nodes are distributed and run from independent clock signals and with unknown geometry, each one must its own obtain channel state information (CSI) to the target nodes. In existing DMIMO architectures, array nodes depend on feedback from target nodes to properly synchronize. This means that target nodes must be cooperative and are responsible for the overhead calculating and transmitting CSI feedback to each node in the array. Within this work, we develop a set of techniques for Retrodirective Distributed Antenna Arrays. Retrodirective arrays have traditionally been used to direct a beam towards a target node, but the work in this thesis seeks to develop a more generalized definition of retrodirectivity. By our definition, a retrodirective array is one that acquires CSI to one or more intended targets simply by listening to the incoming transmissions of those targets; the array may subsequently use this information to do any number of typical MIMO tasks (i.e., beamforming, nullforming, spatial multiplexing, etc.). We explore two primary techniques: i) distributed beamforming and ii) distributed nullforming. Beamforming involves focusing transmitted power towards a specific target node and nullforming involves directing transmissions of array nodes to cancel one another at a specific target node. We focus on these techniques because they can be thought of as basic building blocks for more sophisticated DMIMO techniques. We first develop the theory for retrodirective arrays. Then, we present an architecture for the implementation of this theory. Specifically, we focus on the pre-synchronization of the array, which involves use of a master/slave architecture and a timeslotted message exchange among the array nodes. Finally, developing algorithms to make these arrays both robust and scalable is the focus of this thesis.
3

Scalable algorithms for distributed beamforming and nullforming

Kumar, Amy 01 May 2017 (has links)
Constant evolution requirements of Wi-Fi and cellular standards to meet the demands of better power efficiency, longer range and higher throughput of wireless networks has drawn attention to multiple antenna transmitters and receivers, i.e., multi-input multi-output(MIMO) systems. This research falls in the larger context of distributed MIMO, or DMIMO systems, wherein groups of cooperating transceivers organize themselves into virtual antenna arrays which can, in principle, emulate any MIMO technique that a centralized array can support. Beamforming and nullforming are techniques that can be employed by centralized or distributed antenna array, and can be building blocks for MIMO communication systems; these impart directionality to the array and can help cater to the demands of today's wireless networks. In beamforming, a set of distributed transmitters in a wireless network cooperatively transmit a common message signal in such a way that their individual transmissions add up to a desired SNR level at the set of designated receivers while in nullforming, cooperative transmission ensures that the individual transmissions cancel each other at the set of designated receivers. The key bottleneck in the practical realization of DMIMO is synchronization. Distributed nullforming specifically poses challenges that call for special attention. Here, we develop a set of scalable algorithms for beamforming and nullforming using distributed transmitters by forming a virtual antenna array and overcome the involved challenges in a purely distributed fashion. Under a per-antenna power constraint and assuming equal-gain channels, an ideal N-antenna beamformer provides an N squared-fold coherent power gain on target. Ideal nullforming on the other hand results in zero power on the target. These properties motivate applications in cooperative jamming or communications, where the goal is to maximize the net transmitted power using multiple transmitters while simultaneously protecting a designated receiver. For example, in a cognitive radio system where the transmit array is a secondary user of licensed spectrum which seeks to communicate with a set of secondary receivers (beam targets) without causing any interference at primary receivers (null targets). Another possible application is a cellular network where adjacent Base Stations form a transmit array and coordinate their transmissions to avoid cochannel interference. Recent algorithms on wireless security critically rely on nodes blanketing a landscape with full power jamming signals while protecting a cooperating receiver through nullforming. So a third application can be electronic warfare where a transmit array broadcasts strong jamming signals that disable an enemy's communication infrastructure while protecting friendly stations (null targets) from interference due to the jamming signal. The joint beam and nullforming specifically can be more generally thought of as a fundamental building block for increased spatial spectrum reuse and toward achieving the full spatial multiplexing gains available from MIMO techniques with distributed antenna arrays.
4

Improving Channel Estimation and Tracking Performance in Distributed MIMO Communication Systems

David, Radu Alin 29 April 2015 (has links)
This dissertation develops and analyzes several techniques for improving channel estimation and tracking performance in distributed multi-input multi-output (D-MIMO) wireless communication systems. D-MIMO communication systems have been studied for the last decade and are known to offer the benefits of antenna arrays, e.g., improved range and data rates, to systems of single-antenna devices. D-MIMO communication systems are considered a promising technology for future wireless standards including advanced cellular communication systems. This dissertation considers problems related to channel estimation and tracking in D-MIMO communication systems and is focused on three related topics: (i) characterizing oscillator stability for nodes in D-MIMO systems, (ii) the development of an optimal unified tracking framework and a performance comparison to previously considered sub-optimal tracking approaches, and (iii) incorporating independent kinematics into dynamic channel models and using accelerometers to improve channel tracking performance. A key challenge of D-MIMO systems is estimating and tracking the time-varying channels present between each pair of nodes in the system. Even if the propagation channel between a pair of nodes is time-invariant, the independent local oscillators in each node cause the carrier phases and frequencies and the effective channels between the nodes to have random time-varying phase offsets. The first part of this dissertation considers the problem of characterizing the stability parameters of the oscillators used as references for the transmitted waveforms. Having good estimates of these parameters is critical to facilitate optimal tracking of the phase and frequency offsets. We develop a new method for estimating these oscillator stability parameters based on Allan deviation measurements and compare this method to several previously developed parameter estimation techniques based on innovation covariance whitening. The Allan deviation method is validated with both simulations and experimental data from low-precision and high-precision oscillators. The second part of this dissertation considers a D-MIMO scenario with $N_t$ transmitters and $N_r$ receivers. While there are $N_t imes N_r$ node-to-node pairwise channels in such a system, there are only $N_t + N_r$ independent oscillators. We develop a new unified tracking model where one Kalman filter jointly tracks all of the pairwise channels and compare the performance of unified tracking to previously developed suboptimal local tracking approaches where the channels are not jointly tracked. Numerical results show that unified tracking tends to provide similar beamforming performance to local tracking but can provide significantly better nullforming performance in some scenarios. The third part of this dissertation considers a scenario where the transmit nodes in a D-MIMO system have independent kinematics. In general, this makes the channel tracking problem more difficult since the independent kinematics make the D-MIMO channels less predictable. We develop dynamics models which incorporate the effects of acceleration on oscillator frequency and displacement on propagation time. The tracking performance of a system with conventional feedback is compared to a system with conventional feedback and local accelerometer measurements. Numerical results show that the tracking performance is significantly improved with local accelerometer measurements.

Page generated in 0.0682 seconds