• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic Encoding Is Neither Necessary Nor Sufficient For Logarithmic Compression In Number Estimation

Kim, Dan 02 September 2015 (has links)
No description available.
2

Cognitive Supports for Analogical Reasoning in Rational Number Understanding

Yu, Shuyuan 02 September 2022 (has links)
No description available.
3

Concurrent neurological and behavioral assessment of number line estimation performance in children and adults

Baker, Joseph Michael 01 May 2013 (has links)
Children who struggle to learn math are often identified by their poor performance on common math learning activities, such as number line estimations. While such behavioral assessments are useful in the classroom, naturalistic neuroimaging of children engaged in real-world math learning activities has the potential to identify concurrent behavioral and neurological correlates to poor math performance. Such correlates may help pinpoint effective teaching strategies for atypical learners, and may highlight instructional methods that elicit typical neurological response patterns to such activities. For example, multisensory stimulation that contains information about number enhances infants' and preschool children's behavioral performance on many numerical tasks and has been shown to elicit neural activation in areas related to number processing and decision-making. Thus, when applied to math teaching tools, multisensory stimulation may provide a platform through which both behavioral and neural math-related processes may be enhanced. Common approaches to neuroimaging of math processing lack ecological validity and are often not analogous to real-world learning activities. However, because of its liberal tolerance of movement, near-infrared spectroscopy (NIRS) provides an ideal platform for such studies. Here, NIRS is used to provide the first concurrent examination of neurological and behavioral data from number line estimation performance within children and adults. Moreover, in an effort to observe the behavioral and neurological benefits to number line estimations that may arise from multisensory stimulation, differential feedback (i.e., visual, auditory, or audiovisual) about estimation performance is provided throughout a portion of the task. Results suggest behavioral and neural performance is enhanced by feedback. Moreover, significant effects of age suggest young children show greater neurological response to feedback, and increase in task difficulty resulted in decreased behavioral performance and increased neurological activation associated with mathematical processing. Thus, typical math learners effectively recruit areas of the brain known to process number when math activities become increasingly difficult. Data inform understanding typical behavioral and neural responses to real-world math learning tasks, and may prove useful in triangulating signatures of atypical math learning. Moreover, results demonstrate the utility of NIRS as a platform to provide simultaneous neurological and behavioral data during naturalistic math learning activities.
4

Children’s early mathematics learning and development : Number game interventions and number line estimations / Barns tidiga lärande och utveckling i matematik : Numeriska spelinterventioner och skattningar av tal på tallinjer

Elofsson, Jessica January 2017 (has links)
Children’s early mathematics learning and development have become a topic of increasing interest over the past decade since early mathematical knowledge and skills have been shown to be a strong predictor of later mathematics performance. Understanding how children develop mathematical knowledge and skills and how they can be supported in their early learning could thus prove to be a vital component in promoting learning of more formal mathematics. In light of the above, with this thesis I sought to contribute to an increased understanding of children’s early mathematics learning and development by examining effects of playing different number games on children’s number knowledge and skills, and by investigating children’s representations of numbers on number line tasks. Two number game intervention studies were performed, and effects of three different number game conditions (linear number, circular number and nonlinear number) were investigated by examining 5- and 6-year-old children’s pre- and posttest performance on different numerical tasks. The findings indicate that playing number games in general support children’s development of number knowledge and skills, where the specific learning outcomes are affected differently depending on the type of number game utilized. To elucidate children’s representations of numbers, their performance on two different  umber line tasks have been analyzed using a latent class modeling approach. The results reveal that there is a heterogeneity in 5- and 6-year-old children’s number line estimations and subgroups of children showing different estimation patterns were distinguished. In addition, it is shown that children’s number line estimations can be associated to their number knowledge as well as to task specific aspects. The findings presented in this thesis contribute to the discussion of the value of selecting game activities in a conscious way to support children’s early mathematics learning and development. They also add to the discussion regarding the number line task and how children’s number line estimations can be analyzed and interpreted.

Page generated in 0.1355 seconds