• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 28
  • 12
  • Tagged with
  • 75
  • 75
  • 74
  • 46
  • 46
  • 46
  • 45
  • 44
  • 23
  • 18
  • 16
  • 14
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

A Numerical Model for Self-Compacting Concrete Flow through Reinforced Sections: a Porous Medium Analogy

Vasilic, Ksenija 01 February 2016 (has links)
This thesis addresses numerical simulations of self-compacting concrete (SCC) castings and suggests a novel modelling approach that treats reinforcement zones in a formwork as porous media. As a relatively new field in concrete technology, numerical simulations of fresh concrete flow can be a promising aid to optimise casting processes and to avoid on-site casting incidents by predicting the flow behaviour of concrete during the casting process. The simulations of fresh concrete flow generally involve complex mathematical modelling and time-consuming computations. In case of a casting prediction, the simulation time is additionally significantly increased because each reinforcement bar occurring in succession has to be considered one by one. This is particularly problematic when simulating SCC casting, since this type of concrete is typically used for heavily reinforced structural members. However, the wide use of numerical tools for casting prediction in practice is possible only if the tools are user-friendly and simulations are time-saving. In order to shorten simulation time and to come closer to a practical tool for casting prediction, instead to model steel bars one by one, this thesis suggests to model zones with arrays of steel bars as porous media. Consequently, one models the flow of SCC through a reinforcement zone as a free-surface flow of a non-Newtonian fluid, propagating through the medium. By defining characteristic parameters of the porous medium, the influence on the flow and the changed (apparent) behaviour of concrete in the porous matrix can be predicted. This enables modelling of any reinforcement network as a porous zone and thus significantly simplifies and fastens simulations of reinforced components’ castings. Within the thesis, a computational model for SCC flow through reinforced sections was developed. This model couples a fluid dynamics model for fresh concrete and the macroscopic approach for the influence of the porous medium (formed by the rebars) on the flow. The model is implemented into a Computational Fluid Dynamics software and validated on numerical and experimental studies, among which is a large-scale laboratory casting of a highly reinforced beam. The apparent rheology of concrete within the arrays of steel bars is studied and a methodology to determine unknown input parameters for the porous medium is suggested. Normative tables defining characteristic porous medium parameters as a function of the topology of the rebar zone for different reinforcement cases are generated. Finally, the major contribution of this work is the resulting numerical package, consisting of the numerical solver and the parameter library. The thesis concludes on the ability of the porous medium analogy technique to reliably predict the concrete casting behaviour, while being significantly easier to use and far less time consuming than existing tools. / Die Arbeit behandelt die numerische Modellierung des Fließverhaltens von selbst-verdichtendem Beton (SVB) in bewehrten Schalungselementen. Die numerische Simulation des Fließens von Frischbeton kann eine vielversprechende Unterstützung bei der Optimierung von Befüllvorgängen sein, indem diese bereits im Vorfeld vorhergesagt werden. Die Simulation des Fließens von Frischbeton verwendet komplizierte mathematische Modelle und zeitintensive Rechenoperationen. Darüber hinaus wird die Simulationszeit für die Vorhersage des Füllvorgangs zusätzlich deutlich verlängert, weil aufeinanderfolgende Bewehrungsstäbe einzeln zu berücksichtigen sind. Das ist insbesondere für die Simulation von SVB ein entscheidendes Problemfeld, da SVB oft gerade für hochbewehrte Bauteile verwendet wird. Dennoch ist ein weitreichender Einsatz von numerischen Hilfsmitteln bei der Vorhersage von Füllprozessen nur denkbar, wenn die Anwenderfreundlichkeit und eine Zeitersparnis gewährleistet werden können. Um die Simulationszeit zu verkürzen und näher an eine anwenderfreundliche Lösung für die Vorhersage von Füllprozessen zu kommen, wird als Alternative zur einzelnen Modellierung aller Stahlstäbe in dieser Arbeit vorgeschlagen, Zonen mit Bewehrungsstäben als poröse Medien zu modellieren. Infolgedessen wird das Fließen von SVB durch bewehrte Zonen als Strömung eines nicht-Newton’schen Fluides durch ein poröses Medium betrachtet. Durch die Definition charakteristischer Parameter des porösen Mediums kann das veränderte Verhalten des Betons in der porösen Matrix vorhegesagt werden. Dies ermöglicht die Modellierung beliebiger Bewehrungszonen und vereinfacht und beschleunigt folglich die numerische Simulation bewehrter Bauteile. Im Rahmen der Arbeit wird ein Rechenmodell für das Fließverhalten von SVB durch bewehrte Schalungszonen entwickelt. Das Modell verkoppelt das Strömungsverhalten von Beton mit dem makroskopischen Ansatz für den Einfluss von porösen Medien, welche in diesem Fall die Bewehrungsstäbe ersetzen. Das entwickelte Modell wird in eine CFD-Software implementiert und anhand mehrerer numerischer und experimenteller Studien validiert, darunter auch ein maßstabsgetreues Fließexperiment eines hochbewehrten Balkens. Darüber hinaus wird die scheinbare Rheologie des Betons innerhalb der Anordnung der Stahlstäbe untersucht und daraus eine Methode zur Bestimmung unbekannter Parameter für das poröse Medium vorgeschlagen. Es werden hierfür auch normative Tabellen generiert, die die charakteristischen Eigenschaften der porösen Medien für unterschiedliche Bewehrungsanordnungen abbilden. Zuletzt ist der Hauptbeitrag dieser Arbeit das resultierende Numerikpaket, bestehend aus dem numerischen Solver einschließlich des implementierten Modells sowie der Parameterbibliothek. Im Abschluss werden die Verlässlichkeit der Vorhersage von Füllvorgängen durch die Analogie zu porösen Medien erörtert sowie Schlussfolgerungen zur deutlichen Ersparnis an Aufwand und Zeit gegenüber herkömmlichen Methoden vorgenommen.
42

Strömungssimulation und experimentelle Untersuchung für innovative Verflüssiger auf Basis neuartiger Rohre

Schaake, Katrin, Manzke, Sebastian 09 December 2009 (has links)
In dieser Arbeit werden neuartige Flachrohre für die Verwendung als Rückwandverflüssiger in der Haushaltskältetechnik mit numerischen und dynamischen Simulationen sowie Experimenten untersucht. Dabei kommen unterschiedliche überströmte Längen sowie der Einfluss horizontaler Abstände auf den Wärmeübergang durch freie Konvektion zur Betrachtung. Realisiert wird die numerische Strömungssimulation mit der Software Fluent 3.6.26, wobei das RNG-k-epsilon- als Turbulenzmodell und diskrete Ordinaten zur zusätzlichen Modellierung des Strahlungswärmeübergangs verwendet werden. Zur Verifizierung werden experimentelle Untersuchungen mit natürlicher Konvektion durchgeführt. Ebenso kommt ein kompakter Verflüssiger bei erzwungener Konvektion zur experimentellen Analyse. Mit einem neuen Verflüssigermodell wird außerdem ein Haushaltskühlschrank in Modelica 2.2.1 dynamisch simuliert. Diese Arbeit zeigt, dass die Verwendung eines Flachrohrverflüssigers großes Potenzial einer konkurrenzfähigen Alternative zu konventionellen Verflüssigern besitzt. / In this work novel flat tubes used as rear panel condensers in the household refrigeration technology are examined with numerical and dynamic simulations as well as experiments. Therefore different overflowed lengths and the influence of horizontal spacing on the heat transfer by free convection are taken into consideration. The CFD calculations are realized with the software Fluent 3.6.26, where the RNG-k-epsilon turbulence model and discrete ordinates for an additional modelling of radiation heat transfer are applied. For the verification, experimental studies with natural convection are carried out. Likewise, a compact condenser is experimentally analysed in forced convection. With a new model for the liquefier a domestic refrigerator is also dynamically simulated in Modelica 2.2.1. This work shows that the use of a flat tube condenser has a great potential of a competitive alternative to conventional liquefiers.
43

Numerische Strömungssimulation der Hochdruckvergasung unter Berücksichtigung detaillierter Reaktionsmechanismen

Rehm, Markus 10 December 2010 (has links)
Vergasungsprozesse, bei denen kohlenstoffhaltige Ausgangsstoffe in ein vorwiegend aus Wasserstoff und Kohlenmonoxid bestehendes Synthesegas umgewandelt werden, stellen eine Schlüsseltechnologie für eine zukünftige nachhaltige Rohstoffnutzung dar. Der Grund für den Einsatz von Hochdruckverfahren liegt in der Steigerung der Wirtschaftlichkeit. Die numerische Simulation der Hochdruckvergasung hat große Schnittmengen mit der Verbrennungssimulation. So kann die Flammenzone mit Hilfe von Verbrennungsmodellen beschrieben werden. In der Arbeit wurden Simulationen einer Versuchsanlage für Hochdruckvergasung mit Hilfe kommerzieller CFD-Codes und mit Hilfe des quelloffenen Codes OpenFOAM durchgeführt. Eine Analyse des Verbrennungsmodells ergab, dass die wesentlichen Reaktionen im Reformierungsbereich, wo kein freier Sauerstoff mehr vorhanden ist, nur unzureichend abgebildet wurden. Durch die Verwendung eines alternativen Ansatzes konnte der Modellierungsfehler deutlich reduziert werden.
44

Simulation des Wärme- und Stofftransports in Partialoxidationsprozessen

Richter, Andreas 27 March 2018 (has links)
Die vorliegende Habilitationsschrift stellt den erreichten Stand der CFD-basierten Modellierung ein- und mehrphasiger Hochtemperaturprozesse dar. Die hierzu vorgelegten Arbeiten umfassen die Hochdruck-Partialoxidation von Erdgas, die Vergasung fester Einsatzstoffe in einem endothermen Flugstromreaktor und in einem mehrstufigen Wirbelschichtprozess sowie die Synthesegasaufbereitung in einem neuen Quenchreaktor. Der Forschungsschwerpunkt reicht dabei von der Entwicklung neuer Korrelationen zur Beschreibung der Strömungskräfte und des Wärmeübergangs basierend auf partikelaufgelösten Rechenmodellen über die Modellierung der thermochemischen Konversion reaktiver Einzelpartikel bis hin zur Berechnung und Optimierung unterschiedlicher Hochtemperaturreaktoren. / This habilitation thesis discusses the state of the art for the CFD modeling of single-phase and multi-phase high-temperature processes. The presented publications comprise the high-pressure partial oxidation of natural gas, the gasification of solid fuels in entrained-flow gasifiers and multi-stage fluidized-bed gasifier as well as the syngas treatment in a new quench reactor. The scientific approach covers the development of new correlations for flow forces and heat transfer based on particle-resolved numerical models, the modeling of the thermochemical conversion of reactive single particles, and the calculation and optimization of different high-temperature processes.
45

Analyse von Strömungseffekten in Schichtenladersystemen

Buhl, Marcus 01 October 2018 (has links)
Solarthermie trägt wesentlich zur Verbrauchsreduzierung fossiler Energieträger bei. Die für eine thermische Zwischenspeicherung verwendeten Warmwasserspeicher werden häufig mittels schwerkraftbasierten Schichtenladern beladen. Bisher sind die komplexen Strömungsvorgänge im Beladesystem und deren Auswirkungen auf die Speichereffizienz begrenzt bekannt. Im Rahmen dieser Arbeit erfolgt daher eine detaillierte Auseinandersetzung mit den hydrodynamischen Effekten in einem Schichtenlader. Dreidimensionale CFD-Untersuchungen zeigen, dass im Belader Strömungsschwankungen auftreten, welche mit dem Ausströmverhalten korrelieren und den Schichtungsaufbau negativ beeinflussen. Variationen der Betriebsparameter und Beladergeometrie verdeutlichen deren Einflussnahme auf die Strömungseffekte im Beladesystem. Experimentelle PIV/PLIF-Untersuchungen bestätigen die mit der CFD gewonnenen Erkenntnisse wie z. B. Strömungsasymmetrien im Beladerrohr und ein teilweise periodisches Ausströmen. Zusätzlich identifizieren die experimentellen Messungen starke Instationaritäten der Strömung. / Solar thermal energy makes a significant contribution to reducing the consumption of fossil fuels. Hot water storage tanks are often equipped with gravity-based stratification devices. Up to now, the complex flow in the loading system and the effects on storage efficiency are only been rudimentarily known. In this Phd thesis, therefore, detailed examination of the hydrodynamic effects in a stratification device is conducted. 3D-CFD investigations show that a fluctuating flow exists in the device which correlate with the outflow behaviour and has a negative influence on the thermal stratification in the storages. Variations of the operating parameters and device geometry illustrates their influence on flow effects in the loading system. Experimental PIV/PLIF investigations confirm the results obtained from the CFD, such as flow asymmetries in the stratification device and a temporally periodic outflow. In addition, the experimental measurements identify strong instationarities of the flow.
46

Numerische Simulation und Untersuchung der Schneidstaubabsaugung an Schneid- und Wickelmaschinen

Wolfslast, Sandra 24 May 2023 (has links)
Die Verarbeitung von Folien auf Schneid und Wickelmaschinen erzeugt je nach verwendetem Material Schneidstaubpartikel, welche die Produktqualität herabsetzen können. Um eine hohe Qualität sicherzustellen, wird der Schneidstaub in unmittelbarer Nähe zu seiner Entstehung durch spezielle Absaugungsvorrichtungen entfernt. Versuche haben jedoch gezeigt, dass trotz hoher Absaugleistung bei bestimmten Prozessparametern ein Teil der Partikel nicht erfasst wird. Daher wird im Anschluss an eine Erhebung der bestehenden Systemgrößen ein Modell der Absaugdüse mittels numerischer Simulation auf ihre Eignung zur Partikelentfernung untersucht. Die Untersuchung zeigt, dass bei der Auslegung der Düse eine Berücksichtigung der auf der Folie entstehenden Grenzschicht zwingend erforderlich ist. Um eine zuverlässige Absaugung aller Schneidstaubpartikel auch bei extremen Prozesseinstellungen sicherzustellen, werden weitere Untersuchungen und Anpassungen erforderlich.
47

Untersuchung der Wärmeübergangsintensivierung mit Hilfe statischer Mischer in wassergekühlten Werkzeugen

Anders, Denis, Reinicke, Ulf, Baum, Markus 24 May 2023 (has links)
In diesem Beitrag wird die Wirksamkeit statischer Mischer in verschiedenen Anordnungen und Strömungskonfigurationen untersucht. Auf Grundlage umfangreicher numerischer Untersuchungen werden die Anwendungsgrenzen von spiralförmigen statischen Mischern zur Verbesserung des Wärmeübergangs in Kühlkanälen von Werkzeugmaschinen aufgezeigt. Die numerischen Simulationen wurden mit der kommerziellen Computational-Fluid-Dynamics (CFD)-Software, ANSYS Fluent 2020 R2, durchgeführt. Diese Studie zeigt, dass es einen optimalen Anwendungsbereich für statische Mischer als Wärmeaustauschverstärker in Abhängigkeit von der Strömungsgeschwindigkeit, dem übertragenen Wärmestrom und der Wärmeleitfähigkeit des Werkzeugs gibt. Die Untersuchungen in diesem Beitrag beschränken sich auf einphasige Strömungen in kreisförmigen Querschnitten und geraden Kanalgeometrien. Als repräsentatives Anwendungsbeispiel für eine Werkzeugmaschine wird die Kühlung eines einfachen Spritzgießwerkzeugs untersucht. Die durchgeführten Analysen zeigen, dass der Einsatz von statischer Mischelemente zur Verbesserung der Wärmeübertragung sehr effektiv ist, insbesondere bei Strömungen mit niedrigen bis mittleren Reynoldszahlen, konturnaher Kühlung, hohen Wärmestromwerten sowie hoher Wärmeleitfähigkeit des Werkzeugmaterials. / In this contribution, the effectiveness of helical static mixers in different arrangements and flow configurations/regimes is explored. By means of a thorough numerical analysis the application limits of helical static mixers for the heat transfer enhancement inside cooling channels of machine tools is provided. The numerical simulations were processed with the commercial finite volume Computational Fluid Dynamics (CFD) code, ANSYS Fluent 2020 R2. This study shows that there exists an optimal range of application for static mixers as heat exchange intensifier depending on the flow speed, the transmitted heat flow and the thermal conductivity of the tool. The investigations of this contribution are restricted to single-phase flow in circular cross-sections and straight channel geometries. As a representative application example for a machine tooling, the cooling of a simple injection mould is investigated. The research carried out reveals that the application of static mixing elements for enhancement of heat transfer is very effective, particularly for fluid flow with low to medium Reynolds numbers, close-contour cooling, high values of heat fluxes as well as high thermal conductivity of the tooling material.
48

Numerical Modeling of High-Pressure Partial Oxidation of Natural Gas

Voloshchuk, Yury 13 September 2023 (has links)
High-Pressure Partial Oxidation (HP-POX) of natural gas is one of the techniques in the synthesis gas production by non-catalytic reforming. On the path to emissions reduction, all operating facilities must be optimized to satisfy environmental regulations. In a rapidly changing economic and political environment, technological development from lab-scale to demo-scale, and industrial-scale is no longer feasible. Therefore, new research and design methods must be applied. One of such methods commonly used in science and industry is numerical modeling, which utilizes Computational Fluid Dynamics (CFD), Reduce Order Models (ROMs), kinetic, and equilibrium models. The CFD models provide details about flow field, temperature distribution, and species conversion. However, the computational effort required to conduct such calculations is significant. The computationally expensive CFD models cannot be effectively used in the reactor optimization. Herewith, other modeling techniques utilizing kinetic and equilibrium models do not provide necessary details for process optimization and can only be used for adjustments of boundary conditions, investigation of specific processes occurring in the reactor, or development of sub-models for CFD. A numerical investigation was conducted to validate existing CFD models against benchmark experiments. The results reveled that the CFD model is sensitive to modeling parameters, when simulating complex flows where turbulence-chemistry interaction occurs. Moreover, it was shown that the results sensitivity increases along with the oxidizer/fuel inlet velocities ratio. Based on the conducted experiments, the CFD model validation resulted in definition of the modeling parameters suitable for modeling of HP-POX of natural gas. Based on the validated CFD model, a ROM for HP-POX of natural gas was developed. The model assumes that the reactor consists of several zones characterized by specific conversion processes. Moreover, the model considers inlet streams dissipation upon the injection, and includes several optimization stages that allows model adjustments for any reactor geometry and boundary conditions. It was shown that the developed ROM can reproduce global reactor characteristics at non-equilibrium conditions unlike other ROMs, kinetic, or equilibrium models. Moreover, the validation against CFD results showed that the ROM can correctly account for the \gls{rtd} in the reactors of different geometries and volumes without extensive additional optimization. Finally, new experiments were designed and conduced at semi-industrial HP-POX facility at TU Bergakademie Freiberg. The experiments aimed to study the influence of different oxidizer/fuel velocities ratios on the reactants mixing and process characteristics at high operating pressures. The high velocity difference between oxidizer and fuel was achieved by injection of High-Velocity Oxidizer (HVO). The experiments showed no significant influence of the HVO on the global reactor characteristics and overall species conversion process. However, the numerical analysis of the experimental results demonstrated that the oxidation zone is affected by the oxidizer inlet velocity, and becomes less efficient in the fuel conversion when the oxidizer/fuel inlet velocities ratio is increased. In summary, a sophisticated numerical model validation was conducted and sensitivity of the numerical results to the modeling parameters was carefully studied. The novel natural gas conversion technique was experimentally studied. Based on the conducted experiments and numerical evaluation a ROM was developed. The ROM is capable of producing high accuracy results and greatly decreases the computational effort and time needed for reactor development and optimization.
49

Phasefield modeling of ternary fluid-structure interaction problems

Mokbel, Dominic 09 February 2024 (has links)
Interactions between three immiscible phases, including incompressible viscoelastic structures and fluids, form standard constellations for countless scenarios in natural science. The complexity of many such scenarios has motivated various research efforts in scientific computing. This work presents novel numerical approaches for two specific of these ternary fluid-structure interaction constellations. The potential of these approaches is demonstrated by diverse applications. First, a phase field model is developed describing the interaction between a fluid and a viscoelastic solid. For this purpose, a Navier-Stokes-Cahn-Hilliard system is considered together with a hyperelastic neo-Hookean model. Based on this, an arbitrary Lagrangian-Eulerian (ALE) method is implemented to simulate the indentation of the solid material in the context of atomic force microscopy, capable of predicting physical parameters. Next, the second approach is developed to describe the interaction between a two-phase fluid and a viscoelastic solid, where fluid and solid are defined on separate domains but aligned at the interface between them. The previously introduced phase field model is used to represent the fluid and an ALE method is used for the motion of the grid, where the fluid-solid interface moves with flow velocity. A unified system is solved in all subdomains, which includes both the balance of mass and momentum and the balance of forces at the fluid-solid interface. Simulations of static and dynamic soft wetting are subsequently presented, in particular a contact line moving over a substrate with oscillating stick-slip behavior. This work combines the advantages of phase field and ALE methods for meaningful simulations and emphasizes validity and numerical stability in all approaches.
50

Level Up CFD - GPU-Beschleunigung in Ansys Fluent

Findeisen, Fabian 20 June 2024 (has links)
In der numerischen Strömungssimulation (Computational Fluid Dynamics, CFD) stellt die Berechnungsgeschwindigkeit einen kritischen Faktor dar. Insbesondere bei transienten Berechnungen oder bei der Simulation von umfangreichen Modellen können Berechnungen auf Hochleistungsrechnern mit mehreren hundert Kernen schnell zu einer zeitintensiven Aufgabe werden, die Tage oder sogar Wochen in Anspruch nimmt. Der Vortrag bietet einen detaillierten Einblick in die Möglichkeiten der GPU-Beschleunigung in Ansys Fluent und beleuchtet das Potenzial dieser innovativen Technologie. Zu Beginn wird der neue GPU-Solver in Ansys Fluent vorgestellt. Dieser Gleichungslöser nutzt die Rechenkapazität von Grafikprozessoren (GPUs), um CFD-Berechnungen durch extreme Parallelisierung effizienter durchzuführen als herkömmliche CPU-basierte Solver. Ein zusätzlicher Vorteil dieser Methode ist die signifikante Reduzierung des Energieverbrauchs und der Hardware-Investitionskosten. Im Anschluss werden Benchmarks von CPU- gegenüber GPU-basierten Lösungen anhand verschiedener Anwendungsfälle präsentiert. Diese Benchmarks verdeutlichen die Leistungsfähigkeit und Effizienz von GPU-Solvern im Vergleich zu CPU-Solvern. So kann beispielsweise die Außenumströmung eines Fahrzeugs mit dem Coupled GPU Solver zehnmal schneller auf einer Nvidia A100 GPU berechnet werden als auf herkömmlicher HPC-Hardware mit 48 Kernen. Der Vortrag bietet auch einen Überblick über den aktuellen Funktionsumfang und die zukünftige Entwicklungsroadmap von Ansys Fluent. Dies gibt einen Einblick in die aktuellen Funktionen des Tools und die geplanten Entwicklungen für die Zukunft. Ein weiterer wichtiger Aspekt sind die Lizenz- und Hardwareanforderungen. Dies hilft, die notwendigen Ressourcen für die Implementierung dieser Technologie in eigenen Projekten zu verstehen. Abschließend bietet der Vortrag einen Ausblick auf die Anwendung von Künstlicher Intelligenz (KI) für CFD. Mit der fortschreitenden Entwicklung der KI-Technologie eröffnen sich neue Möglichkeiten für die Verbesserung und Beschleunigung von CFD-Berechnungen. Insgesamt bietet der Vortrag einen umfassenden Überblick über die Anwendung von GPU-Beschleunigung in moderner CFD-Software und die zukünftigen Entwicklungen in diesem Bereich. / Calculation speed is a critical factor in computational fluid dynamics (CFD). Especially for transient calculations or the simulation of extensive models, calculations on high-performance computers with several hundred cores can quickly become a time-consuming task that takes days or even weeks. The presentation offers a detailed insight into the possibilities of GPU acceleration in Ansys Fluent and highlights the potential of this innovative technology. At the beginning, the new GPU solver in Ansys Fluent will be introduced. This solver uses the computing power of graphics processing units (GPUs) to perform CFD calculations more efficiently than conventional CPU-based solvers through extreme parallelization. An additional advantage of this method is the significant reduction in energy consumption and hardware investment costs. Subsequently, benchmarks of CPU- versus GPU-based solutions will be presented based on different use cases. These benchmarks illustrate the performance and efficiency of GPU solvers compared to CPU solvers. For example, the external airflow of a vehicle can be calculated ten times faster with the Coupled GPU Solver on an Nvidia A100 GPU than on conventional HPC hardware with 48 cores. The presentation will also provide an overview of the current range of functions and the future development roadmap.

Page generated in 0.1527 seconds