Spelling suggestions: "subject:"objectbased"" "subject:"object.based""
51 |
Algoritmo rápido para segmentação de vídeos utilizando agrupamento de clustersMonma, Yumi January 2014 (has links)
Este trabalho propõe um algoritmo rápido para segmentação de partes móveis em vídeo, tendo como base a detecção de volumes fechados no espaço tridimensional. O vídeo de entrada é pré-processado com um algoritmo de detecção de bordas baseado em linhas de nível para produzir os objetos. Os objetos detectados são agrupados utilizando uma combinação dos métodos de mean shift clustering e meta-agrupamento. Para diminuir o tempo de computação, somente alguns objetos e quadros são utilizados no agrupamento. Uma vez que a forma de detecção garante que os objetos persistem com o mesmo rótulo em múltiplos quadros, a seleção de quadros impacta pouco no resultado final. Dependendo da aplicação desejada os grupos podem ser refinados em uma etapa de pós-processamento. / This work presents a very fast algorithm to segmentation of moving parts in a video, based on detection of surfaces of the scene with closed contours. The input video is preprocessed with an edge detection algorithm based on level lines to produce the objects. The detected objects are clustered using a combination of mean shift clustering and ensemble clustering. In order decrease even more the computation time required, two methods can be used combined: object filtering by size and selecting only a few frames of the video. Since the detected objects are coherent in time, frame skipping does not affect the final result. Depending on the application the detected clusters can be refined using post processing steps.
|
52 |
Segmentação de movimento coerente aplicada à codificação de vídeos baseada em objetosSilva, Luciano Silva da January 2011 (has links)
A variedade de dispositivos eletrônicos capazes de gravar e reproduzir vídeos digitais vem crescendo rapidamente, aumentando com isso a disponibilidade deste tipo de informação nas mais diferentes plataformas. Com isso, se torna cada vez mais importante o desenvolvimento de formas eficientes de armazenamento, transmissão, e acesso a estes dados. Nesse contexto, a codificação de vídeos tem um papel fundamental ao compactar informação, otimizando o uso de recursos aplicados no armazenamento e na transmissão de vídeos digitais. Não obstante, tarefas que envolvem a análise de vídeos, manipulação e busca baseada em conteúdo também se tornam cada vez mais relevantes, formando uma base para diversas aplicações que exploram a riqueza da informação contida em vídeos digitais. Muitas vezes a solução destes problemas passa pela segmentação de vídeos, que consiste da divisão de um vídeo em regiões que apresentam homogeneidade segundo determinadas características, como por exemplo cor, textura, movimento ou algum aspecto semântico. Nesta tese é proposto um novo método para segmentação de vídeos em objetos constituintes com base na coerência de movimento de regiões. O método de segmentação proposto inicialmente identifica as correspondências entre pontos esparsamente amostrados ao longo de diferentes quadros do vídeo. Logo após, agrupa conjuntos de pontos que apresentam trajetórias semelhantes. Finalmente, uma classificação pixel a pixel é obtida a partir destes grupos de pontos amostrados. O método proposto não assume nenhum modelo de câmera ou de movimento global para a cena e/ou objetos, e possibilita que múltiplos objetos sejam identificados, sem que o número de objetos seja conhecido a priori. Para validar o método de segmentação proposto, foi desenvolvida uma abordagem para a codificação de vídeos baseada em objetos. Segundo esta abordagem, o movimento de um objeto é representado através de transformações afins, enquanto a textura e a forma dos objetos são codificadas simultaneamente, de modo progressivo. O método de codificação de vídeos desenvolvido fornece funcionalidades tais como a transmissão progressiva e a escalabilidade a nível de objeto. Resultados experimentais dos métodos de segmentação e codificação de vídeos desenvolvidos são apresentados, e comparados a outros métodos da literatura. Vídeos codificados segundo o método proposto são comparados em termos de PSNR a vídeos codificados pelo software de referência JM H.264/AVC, versão 16.0, mostrando a que distância o método proposto está do estado da arte em termos de eficiência de codificação, ao mesmo tempo que provê funcionalidades da codificação baseada em objetos. O método de segmentação proposto no presente trabalho resultou em duas publicações, uma nos anais do SIBGRAPI de 2007 e outra no períodico IEEE Transactions on Image Processing. / The variety of electronic devices for digital video recording and playback is growing rapidly, thus increasing the availability of such information in many different platforms. So, the development of efficient ways of storing, transmitting and accessing such data becomes increasingly important. In this context, video coding plays a key role in compressing data, optimizing resource usage for storing and transmitting digital video. Nevertheless, tasks involving video analysis, manipulation and content-based search also become increasingly relevant, forming a basis for several applications that exploit the abundance of information in digital video. Often the solution to these problems makes use of video segmentation, which consists of dividing a video into homogeneous regions according to certain characteristics such as color, texture, motion or some semantic aspect. In this thesis, a new method for segmentation of videos in their constituent objects based on motion coherence of regions is proposed. The proposed segmentation method initially identifies the correspondences of sparsely sampled points along different video frames. Then, it performs clustering of point sets that have similar trajectories. Finally, a pixelwise classification is obtained from these sampled point sets. The proposed method does not assume any camera model or global motion model to the scene and/or objects. Still, it allows the identification of multiple objects, without knowing the number of objects a priori. In order to validate the proposed segmentation method, an object-based video coding approach was developed. According to this approach, the motion of an object is represented by affine transformations, while object texture and shape are simultaneously coded, in a progressive way. The developed video coding method yields functionalities such as progressive transmission and object scalability. Experimental results obtained by the proposed segmentation and coding methods are presented, and compared to other methods from the literature. Videos coded by the proposed method are compared in terms of PSNR to videos coded by the reference software JM H.264/AVC, version 16.0, showing the distance of the proposed method from the sate of the art in terms of coding efficiency, while providing functionalities of object-based video coding. The segmentation method proposed in this work resulted in two publications, one in the proceedings of SIBGRAPI 2007 and another in the journal IEEE Transactions on Image Processing.
|
53 |
Detecção da malha viária na periferia urbana de São Paulo utilizando imagens de alta resolução espacial e classificação orientada a objetos. / Road detection over informal settlements in a suburban area of Sao Paulo city by using high resolution satellite image and a object-based classification approach.Rodrigo Affonso de Albuquerque Nóbrega 17 April 2007 (has links)
O crescimento descontrolado ocorrido nas atuais metrópoles de países em desenvolvimento requer intensos mapeamentos para a atualização da base de dados geográfica. O intenso processo de urbanização vivido na cidade de São Paulo desde os anos 70 ilustra bem esse cenário. Apesar de existirem levantamentos aéreos e, mais recentemente, imagens de satélite com alta resolução espacial, a necessidade de informações geográficas precisas, rápidas e menos onerosas é, mais do que nunca, um fato. Nesse sentido, a classificação automatizada de imagens de alta resolução espacial tem demonstrado resultados insatisfatórios ao utilizar classificadores pixel a pixel, em especial para áreas urbanas. O crescente sucesso da classificação de imagens baseada em objetos tem estimulado pesquisadores a criar novos meios de superar a limitação das tradicionais técnicas de classificação de imagens. A idéia central da classificação de imagens orientada a objetos é extrair objetos primitivos a partir das imagens e utilizar suas informações para a composição de regras e estratégias a serem aplicadas no processo classificatório. Além da análise espectral, a classificação de imagens baseada em objetos permite envolver análises geométricas e contextuais. Este trabalho reporta o uso da classificação baseada em objetos para detecção da malha viária, aplicado na periferia urbana da cidade de São Paulo. Áreas de ocupação irregular compõem a maior parte da área selecionada para o estudo, sendo que a malha viária reflete bem o padrão de ocupação não planejada dessa região. As ruas são em geral geometricamente irregulares e com diferentes tipos de pavimentação. Detectar a malha viária com base nessas características foi o desafio maior deste trabalho, que teve, como hipótese, a viabilidade do emprego da classificação orientada a objetos para essa finalidade. A metodologia apresentada utiliza uma imagem multiespectral do satélite IKONOS II. Como primeiros passos, processou-se a segmentação e calcularam-se as componentes principais. Classes auxiliares como áreas impermeabilizadas e áreas de solo exposto foram computadas utilizando funções apropriadas. Em suma, a partir das informações geométricas dos objetos, como largura, comprimento, coeficiente de assimetria, área, entre outros, alguns objetos foram selecionados como representantes da malha viária, e então analisados perante a informação contextual, para que fossem classificados como vias pavimentadas e vias não pavimentadas. Os resultados foram analisados mediante três diferentes métodos: 1) inspeção visual, na qual foi analisada qualitativamente a aderência entre as vias extraídas e as vias reais; 2) acurácia da classificação, através de comparações entre a malha viária detectada e a de referência, que forneceu parâmetros estatísticos de qualidade da classificação, como os erros de comissão e omissão ; 3) análise linear comparativa, a qual forneceu parâmetros como integridade (ou completeza) e precisão da malha viária detectada utilizando linhas referenciais e linhas extraídas dos polígonos das vias detectadas, obtidos por morfologia matemática. Considerando o alto grau de heterogeneidade das feições presentes na área de estudo, a acurácia geral alcançada foi boa. Embora a metodologia não tenha produzido um mapa viário, no sentido próprio da palavra, o uso combinado de imagens multispectrais de alta resolução espacial e da classificação baseada em objetos mostrou que a metodologia pode ser utilizada para minerar dados relativos a malha viária e produzir informações significantes para auxiliar a tomada de decisões. / Uncontrolled sprawl occurring in large cities of developing countries requires intensive mapping efforts to update geodatabases. The intense urbanization process experienced since the 70\'s in Sao Paulo city illustrates very well the reported scenario. Despite aerial data and, more recent, high spatial resolution satellite data which have been employed as basis for mapping, the need for precise, faster and cheaper mapping efforts is real. In this sense, automated classification of high resolution imagery has demonstrated unsatisfactory results when traditional per-pixel classifiers are used, especially for urban areas. The increasing success of object-based classification has stimulated researchers to create new methodologies to overcome this shortcoming of traditional approaches. The object-based image classification\'s idea is extract object-primitives from images and then use their information to compose rules and strategies to be applied on the classification process. Beyond the spectral analysis, geometric, and contextual analysis are also addressed on object-based classification. This work reports the use of object-based image classification applied on road detection over the suburban area of Sao Paulo city. Informal settlements compose the most part of the study area and the transportation network reflects the unplanned occupation. Roads are geometrically irregular and with different kind of pavements. Detecting roads based on these characteristics was the biggest challenge faced here, and this work hypothesizes object-based classification can be used to. The methodology presented employs an IKONOS II data. At first, principal components and segmentation were computed and then auxiliary data for impervious surface and bare soil areas were previously calculated from customized features. In short, based on geometric information as width, length, asymmetry, area, and more, objects were elected as road and then analyzed through contextual information as paved road or unpaved road. Results were analyzed under three different ways: 1) visual inspection, where the adherence between extracted road and real ones provided a good indicator for qualitative analysis ; 2) classification accuracy, by comparing detected road areas and referential ones, which provided statistical parameters for quality as omission and commission error ; 3) linear comparative analysis, which provided parameters as correctness and completeness using referential lines and lines arose from extracted areas based on mathematical morphology tools. Regarding the high degree of heterogeneity of features present on study area, the overall accuracy reached is good. Despite the methodology did not produce a road map, the results shown the combined use of high resolution multi-spectral imagery and object-based classification can effectively mine road features, producing significant information to support decision makers.
|
54 |
Algoritmo rápido para segmentação de vídeos utilizando agrupamento de clustersMonma, Yumi January 2014 (has links)
Este trabalho propõe um algoritmo rápido para segmentação de partes móveis em vídeo, tendo como base a detecção de volumes fechados no espaço tridimensional. O vídeo de entrada é pré-processado com um algoritmo de detecção de bordas baseado em linhas de nível para produzir os objetos. Os objetos detectados são agrupados utilizando uma combinação dos métodos de mean shift clustering e meta-agrupamento. Para diminuir o tempo de computação, somente alguns objetos e quadros são utilizados no agrupamento. Uma vez que a forma de detecção garante que os objetos persistem com o mesmo rótulo em múltiplos quadros, a seleção de quadros impacta pouco no resultado final. Dependendo da aplicação desejada os grupos podem ser refinados em uma etapa de pós-processamento. / This work presents a very fast algorithm to segmentation of moving parts in a video, based on detection of surfaces of the scene with closed contours. The input video is preprocessed with an edge detection algorithm based on level lines to produce the objects. The detected objects are clustered using a combination of mean shift clustering and ensemble clustering. In order decrease even more the computation time required, two methods can be used combined: object filtering by size and selecting only a few frames of the video. Since the detected objects are coherent in time, frame skipping does not affect the final result. Depending on the application the detected clusters can be refined using post processing steps.
|
55 |
Estimating Arctic sea ice melt pond fraction and assessing ice type separability during advanced meltNasonova, Sasha January 2017 (has links)
Arctic sea ice is rapidly declining in extent, thickness, volume and age, with the majority of the decline in extent observed at the end of the melt season. Advanced melt is a thermodynamic regime and is characterized by the formation of melt ponds on the sea ice surface, which have a lower surface albedo (0.2-0.4) than the surrounding ice (0.5-0.7) allowing more shortwave radiation to enter the system. The loss of multiyear ice (MYI) may have a profound impact on the energy balance of the system because melt ponds on first-year ice (FYI) comprise up to 70% of the ice surface during advanced melt, compared to 40% on MYI. Despite the importance of advanced melt to the ocean-sea ice-atmosphere system, advanced melt and the extent to which winter conditions influence it remain poorly understood due to the highly dynamic nature of melt pond formation and evolution, and a lack of reliable observations during this time. In order to establish quantitative links between winter and subsequent advanced melt conditions, and assess the effects of scale and choice of aggregation features on the relationships, three data aggregation approaches at varied spatial scales were used to compare high resolution satellite GeoEye-1 optical images of melt pond covered sea ice to winter airborne laser scanner surface roughness and electromagnetic induction sea ice thickness measurements. The findings indicate that winter sea ice thickness has a strong association with melt pond fraction (fp) for FYI and MYI. FYI winter surface roughness is correlated with fp, whereas for MYI no association with fp was found. Satellite-borne synthetic aperture radar (SAR) data are heavily relied upon for sea ice observation; however, during advanced melt the reliability of observations is reduced. In preparation for the upcoming launch of the RADARSAT Constellation Mission (RCM), the Kolmogorov-Smirnov (KS) statistical test was used to assess the ability of simulated RCM parameters and grey level co-occurrence matrix (GLCM) derived texture features to discriminate between major ice types during winter and advanced melt, with a focus on advanced melt. RCM parameters with highest discrimination ability in conjunction with optimal GLCM texture features were used as input parameters for Support Vector Machine (SVM) supervised classifications. The results indicate that steep incidence angle RCM parameters show promise for distinguishing between FYI and MYI during advanced melt with an overall classification accuracy of 77.06%. The addition of GLCM texture parameters improved accuracy to 85.91%. This thesis provides valuable contributions to the growing body of literature on fp parameterization and SAR ice type discrimination during advanced melt. / Graduate / 2019-03-21
|
56 |
Forest Change Mapping in Southwestern Madagascar using Landsat-5 TM Imagery, 1990 –2010Grift, Jeroen January 2016 (has links)
The main goal of this study was to map and measure forest change in the southwestern part of Madagascar near the city of Toliara in the period 1990-2010. Recent studies show that forest change in Madagascar on a regional scale does not only deal with forest loss, but also with forest growth However, it is unclear how the study area is dealing with these patterns. In order to select the right classification method, pixel-based classification was compared with object-based classification. The results of this study shows that the object-based classification method was the most suitable method for this landscape. However, the pixel-based approaches also resulted in accurate results. Furthermore, the study shows that in the period 1990–2010, 42% of the forest cover disappeared and was converted into bare soil and savannahs. Next to the change in forest, stable forest regions were fragmented. This has negative effects on the amount of suitable habitats for Malagasy fauna. Finally, the scaling structure in landscape patches was investigated. The study shows that the patch size distribution has long-tail properties and that these properties do not change in periods of deforestation.
|
57 |
Archaeological Application of Airborne LiDAR with Object-Based Vegetation Classification and Visualization Techniques at the Lowland Maya Site of Ceibal, GuatemalaInomata, Takeshi, Pinzón, Flory, Ranchos, José Luis, Haraguchi, Tsuyoshi, Nasu, Hiroo, Fernandez-Diaz, Juan Carlos, Aoyama, Kazuo, Yonenobu, Hitoshi 05 June 2017 (has links)
The successful analysis of LiDAR data for archaeological research requires an evaluation of effects of different vegetation types and the use of adequate visualization techniques for the identification of archaeological features. The Ceibal-Petexbatun Archaeological Project conducted a LiDAR survey of an area of 20 x 20 km around the Maya site of Ceibal, Guatemala, which comprises diverse vegetation classes, including rainforest, secondary vegetation, agricultural fields, and pastures. We developed a classification of vegetation through object-based image analysis (OBIA), primarily using LiDAR-derived datasets, and evaluated various visualization techniques of LiDAR data. We then compared probable archaeological features identified in the LiDAR data with the archaeological map produced by Harvard University in the 1960s and conducted ground-truthing in sample areas. This study demonstrates the effectiveness of the OBIA approach to vegetation classification in archaeological applications, and suggests that the Red Relief Image Map (RRIM) aids the efficient identification of subtle archaeological features. LiDAR functioned reasonably well for the thick rainforest in this high precipitation region, but the densest parts of foliage appear to create patches with no or few ground points, which make the identification of small structures problematic.
|
58 |
Análise orientada a objeto para detecção de favelas e classificação do uso do solo em Taboão da Serra/SP / Object based image analysis for detection of slums and classification of land use in Taboão da Serra/SPJúlio César Pedrassoli 28 November 2011 (has links)
O crescimento acelerado das cidades e os reflexos desse aumento das populações urbanas é preocupação constante na atualidade. Nesse processo, o surgimento de ocupações precárias, especialmente nas regiões metropolitanas, torna-se uma das características mais explicitas, caracterizando a própria lógica de ocupação, uso e direito desigual ao território. O monitoramento dessas áreas, sua formação e expansão, são uma necessidade crescente, em diversos locais no mundo, visto que a inclusão dessas áreas à cidade formal é tido como gatilho para a melhoria das condições de vida de mais de 100 milhões de pessoas que vivem em favelas no mundo todo, como colocam as Metas de Desenvolvimento do Milênio propostas pela Organização das Nações Unidas. Contudo, para que os habitantes das favelas sejam atendidos em seu direito a uma vida digna, faz-se necessário seu conhecimento e principalmente quantas são e onde estão. Um importante instrumento, com relação benéfica entre tempo de aquisição, custo de aplicação e possibilidade de replicabilidade e transferência de conhecimento é o uso de dados de Sensoriamento Remoto. Estes possibilitam o estabelecimento de metodologias através de procedimentos de detecção de feições e classificação do uso do solo, para identificação dessas áreas. Não obstante, os métodos de classificação clássicos quando aplicados a imagens de altíssima resolução espacial não conseguem extrair de forma satisfatória, em determinados casos, informações para uso intraurbano. Nesse ínterim surgem novos paradigmas de classificação de imagens como a Análise Orientada a Objeto, onde o processo de classificação parte do objeto geográfico definido a partir da segmentação da imagem, aproximando o objeto de feições do mundo real. Sobre estes objetos é possível a aplicação de regras de pertinência e de contexto através de linguagens e softwares específicos que permitem a transposição do conhecimento humano de fotointerpretação relação contextual para o meio computacional. Este trabalho objetivou avaliar o uso desta técnica de classificação para a detecção e mapeamento de favelas no município de Taboão da Serra/SP, utilizando dados auxiliares para a caracterização destas áreas e seus graus e tipos de precariedade. Os resultados demonstram a validade da aplicação da técnica. / The accelerated growth of the cities and the reflections of the increase of the urban population has been a constant concern nowadays. In this process, the occurrence of precarious occupancies, mainly in the metropolitan regions, has become one of the most explicit characteristics, describing the logic of occupancy itself, unequal use and right to the territory. The monitoring of these areas, their lineup and expansion, are an increasing need in several places in the world, as the inclusion of these areas in the formal city is considered a trigger for the living conditions improvement of over 100 million people who live in slums all over the world, as the Developments Goals of the Millennium proposed by the United Nations Organization. However, in order to meet the rights to a dignified life of the slums inhabitants, it is necessary to know about them mainly their number and where they are. An important tool related to the beneficial relation among the acquisition time, application cost and possibility of applying again, and transference of knowledge is the use of data from Remote Sensing. These data make it possible to establish the methodologies through the detection of features procedures and classification of the land use for these areas identification. Nevertheless the classical methods of classification cannot obtain, in certain cases, information on the interurban use, in a satisfactory way. In the interim, new paradigms of images classification appear like the Object Based Image Analysis (OBIA) which goes from the defined geographic object to the image segmentation, approaching the object to features of the real world. The application of pertinent rules and context over these objects is possible through specific languages and softwares that allow the transference of human knowledge of photo interpretation and contextual relation to the computing environment. This work aimed at evaluating the use of this classification technique for detection and zoning of slums in Taboão da Serra/SP town using supporting data for the areas characterization, its grades and kinds of precarious conditions. The results show the validity of the technique application.
|
59 |
Možnosti objektově orientované klasifikace při monitoringu luční vegetace a rozhodovacích procesů v KRNAPu / Possibilities of object based image analysis for monitoring of meadow vegetation and management in the Krkonoše Mountains National ParkDorič, Roman January 2013 (has links)
Possibilities of object based image analysis for monitoring of meadow vegetation and management in the Krkonoše Mountains National Park Abstract The main aim of the thesis was to evaluate possibilities of Object Based Image Analysis (OBIA) of WorldView-2 satellite image data and aerial optical scanner for meadow vegetation and managment types classification in Krkonoše Mountains National Park. The classification was based on legend prepared by botanist of the national park. The second goal was to compare classification accuracy of Object Based Image Analysis and neural net classification method that was used by Pomahačová (2012) for the same area and the same WorldView-2 data. OBIA for meadow vegetation was conducted using SVM algorithm and "Decision Tree" algorithm. The classification accuracy was estimated using reference points from the field. The thesis puts the requirements (optimal parameters and conditions) for successfull object based classification of mountain meadow vegetation into a new perspective. Key words: Object based classification, meadows, WorldView-2, aerial optical scanner, SVM, KRNAP
|
60 |
Radar and Optical Data Fusion for Object Based Urban Land Cover Mapping / Radar och optisk datafusion för objektbaserad kartering av urbant marktäckeJacob, Alexander January 2011 (has links)
The creation and classification of segments for object based urban land cover mapping is the key goal of this master thesis. An algorithm based on region growing and merging was developed, implemented and tested. The synergy effects of a fused data set of SAR and optical imagery were evaluated based on the classification results. The testing was mainly performed with data of the city of Beijing China. The dataset consists of SAR and optical data and the classified land cover/use maps were evaluated using standard methods for accuracy assessment like confusion matrices, kappa values and overall accuracy. The classification for the testing consists of 9 classes which are low density buildup, high density buildup, road, park, water, golf course, forest, agricultural crop and airport. The development was performed in JAVA and a suitable graphical interface for user friendly interaction was created parallel to the development of the algorithm. This was really useful during the period of extensive testing of the parameter which easily could be entered through the dialogs of the interface. The algorithm itself treats the pixels as a connected graph of pixels which can always merge with their direct neighbors, meaning sharing an edge with those. There are three criteria that can be used in the current state of the algorithm, a mean based spectral homogeneity measure, a variance based textural homogeneity measure and fragmentation test as a shape measure. The algorithm has 3 key parameters which are the minimum and maximum segments size as well as a homogeneity threshold measure which is based on a weighted combination of relative change due to merging two segments. The growing and merging is divided into two phases the first one is based on mutual best partner merging and the second one on the homogeneity threshold. In both phases it is possible to use all three criteria for merging in arbitrary weighting constellations. A third step is the check for the fulfillment of minimum size which can be performed prior to or after the other two steps. The segments can then in a supervised manner be labeled interactively using once again the graphical user interface for creating a training sample set. This training set can be used to derive a support vector machine which is based on a radial base function kernel. The optimal settings for the required parameters of this SVM training process can be found from a cross-validation grid search process which is implemented within the program as well. The SVM algorithm is based on the LibSVM java implementation. Once training is completed the SVM can be used to predict the whole dataset to get a classified land-cover map. It can be exported in form of a vector dataset. The results yield that the incorporation of texture features already in the segmentation is superior to spectral information alone especially when working with unfiltered SAR data. The incorporation of the suggested shape feature however doesn’t seem to be of advantage, especially when taking the much longer processing time into account, when incorporating this criterion. From the classification results it is also evident, that the fusion of SAR and optical data is beneficial for urban land cover mapping. Especially the distinction of urban areas and agricultural crops has been improved greatly but also the confusion between high and low density could be reduced due to the fusion. / Dragon 2 Project
|
Page generated in 0.0619 seconds