1 |
Estimation of Local Map from Radar Data / Skattning av lokal karta från radardataMoritz, Malte, Pettersson, Anton January 2014 (has links)
Autonomous features in vehicles is already a big part of the automobile area and now many companies are looking for ways to make vehicles fully autonomous. Autonomous vehicles need to get information about the surrounding environment. The information is extracted from exteroceptive sensors and today vehicles often use laser scanners for this purpose. Laser scanners are very expensive and fragile, it is therefore interesting to investigate if cheaper radar sensors could be used. One big challenge when it comes to autonomous vehicles is to be able to use the exteroceptive sensors and extract a position of the vehicle and at the same time get a map of the environment. The area of Simultaneous Localization and Mapping (SLAM) is a well explored area when using laser scanners but is not that well explored when using radars. It has been investigated if it is possible to use radar sensors on a truck to create a map of the area where the truck drives. The truck has been equipped with ego-motion sensors and radars and the data from them has been fused together to get a position of the truck and to get a map of the surrounding environment, i.e. a SLAM algorithm has been implemented. The map is represented by an Occupancy Grid Map (OGM) which should only consist of static objects. The OGM is updated probabilistically by using a binary Bayes filter. To localize the truck with help of motion sensors an Extended Kalman Filter (EKF) is used together with a map and a scan match method. All these methods are put together to create a SLAM algorithm. A range rate filter method is used to filter out noise and non-static measurements from the radar. The results of this thesis show that it is possible to use radar sensors to create a map of a truck's surroundings. The quality of the map is considered to be good and details such as space between parked trucks, signs and light posts can be distinguished. It has also been proven that methods with low performance on their own can together with other methods work very well in the SLAM algorithm. Overall the SLAM algorithm works well but when driving in unexplored areas with a low number of objects problems with positioning might occur. A real time system has also been implemented and the map can be seen at the same time as the truck is manoeuvred.
|
2 |
Parking Map Generation and Tracking Using Radar : Adaptive Inverse Sensor Model / Parkeringskartagenerering och spårning med radarMahmoud, Mohamed January 2020 (has links)
Radar map generation using binary Bayes filter or what is commonly known as Inverse Sensor Model; which translates the sensor measurements into grid cells occupancy estimation, is a classical problem in different fields. In this work, the focus will be on development of Inverse Sensor Model for parking space using 77 GHz FMCW (Frequency Modulated Continuous Wave) automotive radar, that can handle different environment geometrical complexity in a parking space. There are two main types of Inverse Sensor Models, where each has its own assumption about the sensor noise. One that is fixed and is similar to a lookup table, and constructed based on combination of sensor-specific characteristics, experimental data and empirically-determined parameters. The other one is learned by using ground truth labeling of the grid map cell, to capture the desired Inverse Sensor Model. In this work a new Inverse Sensor Model is proposed, that make use of the computational advantage of using fixed Inverse Sensor Model and capturing desired occupancy estimation based on ground truth labeling. A derivation of the occupancy grid mapping problem using binary Bayes filtering would be performed from the well known SLAM (Simultaneous Localization and Mapping) problem, followed by presenting the Adaptive Inverse Sensor Model, that uses fixed occupancy estimation but with adaptive occupancy shape estimation based on statistical analysis of the radar measurements distribution across the acquisition environment. A prestudy of the noise nature of the radar used in this work is performed, to have a common Inverse Sensor Model as a benchmark. Then the drawbacks of such Inverse Sensor Model would be addressed as sub steps of Adaptive Inverse Sensor Model, to be able to haven an optimal grid map occupancy estimator. Finally a comparison between the generated maps using the benchmark and the adaptive Inverse Sensor Model will take place, to show that under the fulfillment of the assumptions of the Adaptive Inverse Sensor Model, the Adaptive Inverse Sensor Model can offer a better visual appealing map to that of the benchmark.
|
3 |
Road features detection and sparse map-based vehicle localization in urban environments / Detecção de características de rua e localização de veículos em ambientes urbanos baseada em mapas esparsosHata, Alberto Yukinobu 13 December 2016 (has links)
Localization is one of the fundamental components of autonomous vehicles by enabling tasks as overtaking, lane keeping and self-navigation. Urban canyons and bad weather interfere with the reception of GPS satellite signal which prohibits the exclusive use of such technology for vehicle localization in urban places. Alternatively, map-aided localization methods have been employed to enable position estimation without the dependence on GPS devices. In this solution, the vehicle position is given as the place that best matches the sensor measurement to the environment map. Before building the maps, feature sof the environment must be extracted from sensor measurements. In vehicle localization, curbs and road markings have been extensively employed as mapping features. However, most of the urban mapping methods rely on a street free of obstacles or require repetitive measurements of the same place to avoid occlusions. The construction of an accurate representation of the environment is necessary for a proper match of sensor measurements to the map during localization. To prevent the necessity of a manual process to remove occluding obstacles and unobserved areas, a vehicle localization method that supports maps built from partial observations of the environment is proposed. In this localization system,maps are formed by curb and road markings extracted from multilayer laser sensor measurements. Curb structures are detected even in the presence of vehicles that occlude the roadsides, thanks to the use of robust regression. Road markings detector employs Otsu thresholding to analyze infrared remittance data which makes the method insensitive to illumination. Detected road features are stored in two map representations: occupancy grid map (OGM) and Gaussian process occupancy map (GPOM). The first approach is a popular map structure that represents the environment through fine-grained grids. The second approach is a continuous representation that can estimate the occupancy of unseen areas. The Monte Carlo localization (MCL) method was adapted to support the obtained maps of the urban environment. In this sense, vehicle localization was tested in an MCL that supports OGM and an MCL that supports GPOM. Precisely, for MCL based on GPOM, a new measurement likelihood based on multivariate normal probability density function is formulated. Experiments were performed in real urban environments. Maps were built using sparse laser data to verify there ronstruction of non-observed areas. The localization system was evaluated by comparing the results with a high precision GPS device. Results were also compared with localization based on OGM. / No contexto de veículos autônomos, a localização é um dos componentes fundamentais, pois possibilita tarefas como ultrapassagem, direção assistida e navegação autônoma. A presença de edifícios e o mau tempo interferem na recepção do sinal de GPS que consequentemente dificulta o uso de tal tecnologia para a localização de veículos dentro das cidades. Alternativamente, a localização com suporte aos mapas vem sendo empregada para estimar a posição sem a dependência do GPS. Nesta solução, a posição do veículo é dada pela região em que ocorre a melhor correspondência entre o mapa do ambiente e a leitura do sensor. Antes da criação dos mapas, características dos ambientes devem ser extraídas a partir das leituras dos sensores. Dessa forma, guias e sinalizações horizontais têm sido largamente utilizados para o mapeamento. Entretanto, métodos de mapeamento urbano geralmente necessitam de repetidas leituras do mesmo lugar para compensar as oclusões. A construção de representações precisas dos ambientes é essencial para uma adequada associação dos dados dos sensores como mapa durante a localização. De forma a evitar a necessidade de um processo manual para remover obstáculos que causam oclusão e áreas não observadas, propõe-se um método de localização de veículos com suporte aos mapas construídos a partir de observações parciais do ambiente. No sistema de localização proposto, os mapas são construídos a partir de guias e sinalizações horizontais extraídas a partir de leituras de um sensor multicamadas. As guias podem ser detectadas mesmo na presença de veículos que obstruem a percepção das ruas, por meio do uso de regressão robusta. Na detecção de sinalizações horizontais é empregado o método de limiarização por Otsu que analisa dados de reflexão infravermelho, o que torna o método insensível à variação de luminosidade. Dois tipos de mapas são empregados para a representação das guias e das sinalizações horizontais: mapa de grade de ocupação (OGM) e mapa de ocupação por processo Gaussiano (GPOM). O OGM é uma estrutura que representa o ambiente por meio de uma grade reticulada. OGPOM é uma representação contínua que possibilita a estimação de áreas não observadas. O método de localização por Monte Carlo (MCL) foi adaptado para suportar os mapas construídos. Dessa forma, a localização de veículos foi testada em MCL com suporte ao OGM e MCL com suporte ao GPOM. No caso do MCL baseado em GPOM, um novo modelo de verossimilhança baseado em função densidade probabilidade de distribuição multi-normal é proposto. Experimentos foram realizados em ambientes urbanos reais. Mapas do ambiente foram gerados a partir de dados de laser esparsos de forma a verificar a reconstrução de áreas não observadas. O sistema de localização foi avaliado por meio da comparação das posições estimadas comum GPS de alta precisão. Comparou-se também o MCL baseado em OGM com o MCL baseado em GPOM, de forma a verificar qual abordagem apresenta melhores resultados.
|
4 |
Road features detection and sparse map-based vehicle localization in urban environments / Detecção de características de rua e localização de veículos em ambientes urbanos baseada em mapas esparsosAlberto Yukinobu Hata 13 December 2016 (has links)
Localization is one of the fundamental components of autonomous vehicles by enabling tasks as overtaking, lane keeping and self-navigation. Urban canyons and bad weather interfere with the reception of GPS satellite signal which prohibits the exclusive use of such technology for vehicle localization in urban places. Alternatively, map-aided localization methods have been employed to enable position estimation without the dependence on GPS devices. In this solution, the vehicle position is given as the place that best matches the sensor measurement to the environment map. Before building the maps, feature sof the environment must be extracted from sensor measurements. In vehicle localization, curbs and road markings have been extensively employed as mapping features. However, most of the urban mapping methods rely on a street free of obstacles or require repetitive measurements of the same place to avoid occlusions. The construction of an accurate representation of the environment is necessary for a proper match of sensor measurements to the map during localization. To prevent the necessity of a manual process to remove occluding obstacles and unobserved areas, a vehicle localization method that supports maps built from partial observations of the environment is proposed. In this localization system,maps are formed by curb and road markings extracted from multilayer laser sensor measurements. Curb structures are detected even in the presence of vehicles that occlude the roadsides, thanks to the use of robust regression. Road markings detector employs Otsu thresholding to analyze infrared remittance data which makes the method insensitive to illumination. Detected road features are stored in two map representations: occupancy grid map (OGM) and Gaussian process occupancy map (GPOM). The first approach is a popular map structure that represents the environment through fine-grained grids. The second approach is a continuous representation that can estimate the occupancy of unseen areas. The Monte Carlo localization (MCL) method was adapted to support the obtained maps of the urban environment. In this sense, vehicle localization was tested in an MCL that supports OGM and an MCL that supports GPOM. Precisely, for MCL based on GPOM, a new measurement likelihood based on multivariate normal probability density function is formulated. Experiments were performed in real urban environments. Maps were built using sparse laser data to verify there ronstruction of non-observed areas. The localization system was evaluated by comparing the results with a high precision GPS device. Results were also compared with localization based on OGM. / No contexto de veículos autônomos, a localização é um dos componentes fundamentais, pois possibilita tarefas como ultrapassagem, direção assistida e navegação autônoma. A presença de edifícios e o mau tempo interferem na recepção do sinal de GPS que consequentemente dificulta o uso de tal tecnologia para a localização de veículos dentro das cidades. Alternativamente, a localização com suporte aos mapas vem sendo empregada para estimar a posição sem a dependência do GPS. Nesta solução, a posição do veículo é dada pela região em que ocorre a melhor correspondência entre o mapa do ambiente e a leitura do sensor. Antes da criação dos mapas, características dos ambientes devem ser extraídas a partir das leituras dos sensores. Dessa forma, guias e sinalizações horizontais têm sido largamente utilizados para o mapeamento. Entretanto, métodos de mapeamento urbano geralmente necessitam de repetidas leituras do mesmo lugar para compensar as oclusões. A construção de representações precisas dos ambientes é essencial para uma adequada associação dos dados dos sensores como mapa durante a localização. De forma a evitar a necessidade de um processo manual para remover obstáculos que causam oclusão e áreas não observadas, propõe-se um método de localização de veículos com suporte aos mapas construídos a partir de observações parciais do ambiente. No sistema de localização proposto, os mapas são construídos a partir de guias e sinalizações horizontais extraídas a partir de leituras de um sensor multicamadas. As guias podem ser detectadas mesmo na presença de veículos que obstruem a percepção das ruas, por meio do uso de regressão robusta. Na detecção de sinalizações horizontais é empregado o método de limiarização por Otsu que analisa dados de reflexão infravermelho, o que torna o método insensível à variação de luminosidade. Dois tipos de mapas são empregados para a representação das guias e das sinalizações horizontais: mapa de grade de ocupação (OGM) e mapa de ocupação por processo Gaussiano (GPOM). O OGM é uma estrutura que representa o ambiente por meio de uma grade reticulada. OGPOM é uma representação contínua que possibilita a estimação de áreas não observadas. O método de localização por Monte Carlo (MCL) foi adaptado para suportar os mapas construídos. Dessa forma, a localização de veículos foi testada em MCL com suporte ao OGM e MCL com suporte ao GPOM. No caso do MCL baseado em GPOM, um novo modelo de verossimilhança baseado em função densidade probabilidade de distribuição multi-normal é proposto. Experimentos foram realizados em ambientes urbanos reais. Mapas do ambiente foram gerados a partir de dados de laser esparsos de forma a verificar a reconstrução de áreas não observadas. O sistema de localização foi avaliado por meio da comparação das posições estimadas comum GPS de alta precisão. Comparou-se também o MCL baseado em OGM com o MCL baseado em GPOM, de forma a verificar qual abordagem apresenta melhores resultados.
|
5 |
Automatic Parking and Path Following Control for a Heavy-Duty VehicleMörhed, Joakim, Östman, Filip January 2017 (has links)
The interest in autonomous vehicles has never been higher and there are several components that need to function for a vehicle to be fully autonomous; one of which is the ability to perform a parking at the end of a mission. The objective of this thesis work is to develop and implement an automatic parking system (APS) for a heavy-duty vehicle (HDV). A delimitation in this thesis work is that the parking lot has a known structure and the HDV is a truck without any trailer and access to more computational power and sensors than today's commercial trucks. An automatic system for searching the parking lot has been developed which updates an occupancy grid map (OGM) based on measurements from GPS and LIDAR sensors mounted on the truck. Based on the OGM and the known structure of the parking lot, the state of the parking spots is determined and a path can be computed between the current and desired position. Based on a kinematic model of the HDV, a gain-scheduled linear quadratic (LQ) controller with feedforward action is developed. The controller's objective is to stabilize the lateral error dynamics of the system around a precomputed path. The LQ controller explicitly takes into account that there exist an input delay in the system. Due to minor complications with the precomputed path the LQ controller causes the steering wheel turn too rapidly which makes the backup driver nervous. To limit these rapid changes of the steering wheel a controller based on model predictive control (MPC) is developed with the goal of making the steering wheel behave more human-like. A constraint for maximum allowed changes of the controller output is added to the MPC formulation as well as physical restrictions and the resulting MPC controller is smoother and more human-like, but due to computational limitations the controller turns out less effective than desired. Development and testing of the two controllers are evaluated in three different environments of varying complexity; the simplest simulation environment contains a basic vehicle model and serves as a proof of concept environment, the second simulation environment uses a more realistic vehicle model and finally the controllers are evaluated on a full-scale HDV. Finally, system tests of the APS are performed and the HDV successfully parks with the LQ controller as well as the MPC controller. The concept of a self-parking HDV has been demonstrated even though more tuning and development needs to be done before the proposed APS can be used in a commercial HDV.
|
Page generated in 0.0682 seconds