191 |
The application of optimal estimation retrieval to lidar observationsPovey, Adam Charles January 2013 (has links)
Optimal estimation retrieval is a nonlinear regression scheme to determine the conditions statistically most-likely to produce a given measurement, weighted against any a priori knowledge. The technique is applied to three problems within the field of lidar data analysis. A retrieval of the aerosol backscatter and either the extinction or lidar ratio from two-channel Raman lidar data is developed using the lidar equations as a forward model. It produces profiles consistent with existing techniques at a resolution of 10-1000 m and uncertainty of 5-20%, dependent on the quality of data. It is effective even when applied to noisy, daytime data but performs poorly in the presence of cloud. Two of the most significant sources of uncertainty in that retrieval are the nonlinearity of the detectors and the instrument's calibration (known as the dead time and overlap function). Attempts to retrieve a nonlinear correction from a pair of lidar profiles, one attenuated by a neutral density filter, are not successful as uncertainties in the forward model eliminate any information content in the measurements. The technique of Whiteman et al. [1992] is found to be the most accurate. More successful is a retrieval of the overlap function of a Raman channel using a forward model combining an idealised extinction profile and an adaptation of the equations presented in Halldórsson and Langerholc [1978]. After refinement, the retrieval is shown to be at least as accurate, and often superior to, existing methods of calibration from routine measurements, presenting uncertainties of 5-15%. These techniques are then applied to observations of ash over southern England from the Eyjafjallajökull eruption of April 2010. Lidar ratios of 50-60 sr were observed when the plume first appeared, which reduced to 20-30 sr after several days within the planetary boundary layer, indicating an alteration of the particles over time.
|
192 |
Seasonal and interannual variability in Saturn's stratosphereSinclair, James A. January 2014 (has links)
The stratosphere of Saturn is highly variable. With an axial tilt of 26.7°, Saturn experiences seasons like Earth and is currently approaching northern summer solstice in 2017. In addition to general seasonal change, previous studies have highlighted that Saturn's stratosphere is host to a range of dynamical phenomena. These processes have an observable effect on the vertical temperature profile and stratospheric concentrations of acetylene (C<sub>2</sub>H<sub>2</sub>) and ethane (C<sub>2</sub>H<sub>6</sub>), which may be determined or retrieved from thermal infrared observations of Saturn. This thesis presents an analysis of observations of Saturn acquired by Voyager's IRIS (Infrared Interferometer Spectrometer, 180 - 2500 <sup>cm-1</sup>, Hanel et al.,[1980]) instrument in 1980, Cassini's CIRS (Composite Infrared Spectrometer, 10 - 1400 <sup>cm-1</sup>, Flasar et al.,[2004]) instrument from 2005 to 2012 and the Celeste spectrometer (400 - 2000 <sup>cm-1</sup>, Moran et al.,[2007]) on NASA's IRTF (Infrared Telescope Facility) in 2012 in order to track seasonal and interannual changes in Saturn's stratosphere. The concentrations of C<sub>2</sub>H<sub>2</sub> and C<sub>2</sub>H<sub>6</sub> were seen to decrease at 15°S and increase at 25°N from 2005 to 2009/2010. These changes at 15°S and 25°N respectively indicate upward and downward branches associated with cross-equatorial seasonally-reversing Hadley circulation that has been predicted by a general circulation model [Friedson and Moses, 2012]. Strong cooling of up to 17 K at high-southern latitudes from 2005 to 2010 suggests an autumnal weakening of a vortex that appears to form at the pole of the summer hemisphere [Fletcher et al., 2008]. The emergence of a similar northern polar vortex as northern summer solstice approaches was yet to be observed in 2012. Interannual differences in the equatorial temperature structure between 1980 and 2009/2010 suggest Saturn's semiannual oscillation (or SSAO, Fouchet et al. [2008]; Orton et al. [2008]) has been captured in a different phase from one year to the next. This is puzzling since the oscillation would be expected to have undergone two cycles assuming its period is half a Saturn year (14.7 years). This contrast is suggestive that the period of the SSAO is more quasisemiannual.
|
193 |
Detection of stratospheric gravity waves using HIRDLS dataWright, Corwin January 2010 (has links)
Temperature measurements from the HIRDLS instrument on NASA's Aura satellite are analysed for the purposes of detecting and studying internal gravity waves in the terrestrial stratosphere. A detailed description of the methodology used to obtain these data is given, including details of the instrument correction processes used to compensate for errors introduced by a blockage in the instrument optics. A short precis of the relevant theoretical considerations related to atmospheric gravity waves is then outlined. The thesis then discusses the use of the Stockwell (time-frequency) Transform for the detection of gravity waves in HIRDLS data, together with a detailed analysis of the limitations of this method, and the results obtained from this analysis are analysed by comparison to other instruments and climatology. It is concluded that the Stockwell Transform is an appropriate method for the analysis of the HIRDLS dataset, and that the results obtained are robust. We apply these results to analyse stratospheric gravity wave activity during the 2005/06 Arctic sudden stratospheric warming. By comparing the magnitude and form of the gravity wave results to local wind data obtained from ECMWF operational analyses, we conclude that a heavily deformed stratopause observed during this period by other instruments was most probably due to wind-based filtering of the gravity wave spectrum during this period.
|
194 |
Global cloud properties on Venus from orbital infrared spectroscopyBarstow, Joanna Katy January 2012 (has links)
This thesis describes the derivation of Venusian global cloud properties from infrared remote sensing data obtained by the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on the European Space Agency Venus Express satellite. A computationally-efficient retrieval method is designed to exploit the dataset, which provides coverage of the entire nightside southern hemisphere of Venus. Spatially-resolved near-infrared spectra have been used to derive improved models of the vertical structure and global distribution of cloud properties in the southern hemisphere. Wavelengths within transparency windows in the 1.0 - 2.6 micron range covered by VIRTIS are sensitive on the nightside to absorption by the lower and middle sulphuric acid cloud layers, which are back-lit by thermally-emitted radiation from the hot lower atmosphere (Taylor et al. 1997). The cloud model used to interpret the spectra builds on work by Crisp (1986), Pollack et al. (1993) and Grinspoon et al. (1993). Retrieved parameters are the acid concentration in the cloud droplets, the average size of the particles in the lower cloud and the altitude of the cloud base in the model. Values are estimated initially using wavelength pairs selected for their unique sensitivity to each parameter, and then validated using model spectra generated using the NEMESIS radiative transfer and retrieval code (Irwin et al. 2008) as developed for Venus (Tsang et al. 2008a). The spatial variation of sulphuric acid concentration in the cloud particles is estimated ; the concentration is found to be higher in regions of optically thick cloud. The retrieved cloud base altitude varies with latitude, reaching a maximum height near -50 degreees before falling by several km towards the pole. An increase in average particle size near the pole (Wilson et al. 2008) and the finding of latitudinally-variable CO abundance at 35 - 40 km altitude (Tsang et al. 2008) are both confirmed. A decrease in tropospheric H₂O abundance at high latitudes is observed, and provides evidence for strong downwelling between +/-60 and +/-75 degrees latitude, which marks the poleward extent of the Hadley cell circulation. Long-term secular change is also observed over a period of two Earth years. The measurements presented here provide a reference dataset for microphysical and dynamical modelling of the cloud deck, and the role of the cloud as a dynamical and chemical tracer means that such observations are of considerable value for increased understanding of the Venusian atmosphere.
|
195 |
Martian dust lifting, transport and associated processesMulholland, David Paul January 2012 (has links)
The dust lifting capacity of the UK Mars General Circulation Model has been extended through the development of a new wind stress lifting parameterisation, and the simulation of a finite, variable surface dust layer. This second addition, which was represented by the use of lifting thresholds that were adjusted at each surface gridpoint in response to the removal or deposition of dust, led to enhanced variability in the timing and peak magnitude of major dust storms produced in the model. These dust storms were realistic in many respects, and the observed global dust storm frequency of occurrence of roughly one in every three years was approximately reproduced by the model, but an artificial threshold decrease rate was required to maintain dust lifting on a multiannual timescale - this was believed to be due to inaccuracies in the net cross-equatorial dust flux, which showed a strong bias towards the northern hemisphere. Significant changes were seen in model dust lifting rates when the influence of a heterogeneous surface roughness length was included in the wind stress scheme, and the need for more sophisticated sub-gridscale methods in future dust lifting schemes, to cope with this and other effects, was noted. The inclusion of radiatively active water clouds in model runs also affected dust lifting rates, particularly in the vicinity of the polar caps in autumn, winter and spring. The dynamics behind the formation of small, cap-edge dust storms during these periods were examined in detail, and it was found that a cessation in dust lifting activity that occurs around winter solstice does so due to a combination of the radiative effects of global dust loading and polar hood ice clouds, and zonal variations in midlatitude topography. The direct interaction between dust and ice, in the form of nucleation and scavenging, was investigated. It was found that scavenging by water ice, if it is suitably efficient, could significantly reduce the dust content of the winter polar regions. However, the dust and ice vertical profiles measured in the aphelion cloud belt by Mars Climate Sounder were not reproduced by the model with any of the possible scavenging efficiencies used. It appears that scavenging cannot provide an explanation for the existence of sharply defined, elevated dust layers at low latitudes.
|
196 |
National Governance of Offshore Volumes: Challenging Geometries, Geopolitics and GeophysicalitiesSammler, Katherine Genevieve, Sammler, Katherine Genevieve January 2016 (has links)
This dissertation explores the challenges posed by the materialities of oceans and other extraterritorial spaces to state capture and capital development. Utilizing theories emerging political geographers surrounding vertical and volume components of territory and theoretical engagements with materiality of non-terrestrial spaces, this research seeks to investigate entanglements of the geopolitical and geophysical in constructing and practicing (re)interpretations of territory and sovereignty, power and space. A focus on New Zealand and the South Pacific serves to unravel these cross scalar, dynamic categories of national territory and sovereignty in relation to the emerging political and social constructions of the deep sea, sea level, and air space, as well as the blurred and shifting boundaries of each. Contextualizing historical and regional contingencies of the spatial organizations of maritime space, this dissertation seeks to open up new ocean imaginaries and ontologies by making explicit the material, technical and political constructions that produce offshore territories.
|
197 |
Cloud cycling, scavenging and aerosol vertical profiles : process sensitivity and observational constraintsKipling, Zak January 2013 (has links)
The effects of aerosol in the atmosphere account for some of the largest uncertainties in estimates of the human impact on climate. These effects depend not only on the total mass of aerosol, but also its size distribution, mixing state and vertical profile. Previous studies have suggested that both the size distribution and mixing state of aerosol may be strongly influenced by repeated cycling through non-precipitating cloud. The extent of this process is assessed in the HadGEM3–UKCA model; although fewer cycles are seen for all aerosol than in previous studies, the figure varies considerably between aerosol types. The role of scavenging by precipitating cloud is also considered, and several approaches to increasing the physical realism of its representation are considered. In particular, coupling convective scavenging into the convective transport scheme is shown to provide significant benefits over an operator-split approach (which underestimates removal and allows excess aerosol to reach the upper troposphere and be transported to remote regions). To evaluate the alternative convective scavenging schemes, a method is developed for carrying out a pointwise evaluation against vertically-resolved in-situ observations from large-scale aircraft campaigns, based on nudging and flight-track sampling in the model. It is demonstrated that this approach can help to constrain the choice between different model configurations with a degree of statistical confidence. Finally, the processes controlling the vertical profile of aerosol are investigated using a series of model-based sensitivity tests, along with the extent to which these processes can account for the large diversity in vertical profiles seen amongst current models. For mass profiles and number profiles of large particles (greater than about 100nm dry diameter), removal and secondary production processes are shown to be most important; for number profiles of smaller particles, microphysical processes are shown to become increasingly dominant.
|
198 |
Evolução tectono-metamórfica das rochas máficas e ultramáficas da região de Águas de Lindóia e Arcadas, estado de São Paulo /Lazarini, Ana Paula. January 2008 (has links)
Orientador: Antenor Zanardo / Banca: Marcos Aurélio Farias de Oliveira / Banca: Antonio José Ranalli Nardy / Banca: Eliane Aparecida Del Lama / Banca: Gergely Andres Julio Szabó / Resumo: As rochas máficas e ultramáficas em foco estão inseridas na Faixa Itapira/Amparo. Ocorrem na forma de corpos tabulares a lenticulares e são representadas por metaperidotitos, xistos ultramáficos e anfibolitos. Rochas metassomáticas aparecem associadas às máficas e ultramáficas. A litoquímica juntamente com dados de campo, a petrografia e a geocronologia mostram que os processos tectono-metamórficos que atuaram sobre essas rochas provocaram mudanças químicas e mobilidade de elementos maiores, menores, traços e terras-raras. O contexto geológico juntamente com os dados obtidos sugere que essas rochas sejam derivadas de fragmentos de crostas oceânicas embutidas na crosta continental durante o Paleoproterozóico e não de ofiólitos brasilianos, como anteriormente aventado. Indicam, também, que não houve geração de material juvenil no Neoproterozóico, apenas retrabalhamento de rochas mais antigas. Diante da possibilidade de os litotipos atribuídos ao Grupo Itapira terem sido gerados em mais de um ciclo geotectônico optou-se pela denominação de Complexo Itapira / Abstract: The metamafic and metaultramafic rocks studied in this work are located in Itapira/Amparo belt. They occur as tabular to lenticular bodies and are represented by metaperidotites, ultramafic schists and amphibolites. Metassomatic rocks are associated with these rocks. Lithochemistry, field data, petrography and geochronology indicate that the tectonic-metamorphic processes which actuated over the studied region produced chemical changes and the mobility of major, minor, trace and rare earth elements. Geological context with such data suggest that these rocks were originated from oceanic crust pieces emplaced in continental crust during Palaeoproterozoic, not from brazilian ophiolites like avocated before. They also indicate that there were no primary material generation on the Late Proterozoic, just reworking of older rocks / Doutor
|
199 |
Examining the limitations of 238U/235U in marine carbonates as a paleoredox proxyJanuary 2018 (has links)
abstract: Variations of 238U/235U in sedimentary carbonate rocks are being explored as a tool for reconstructing oceanic anoxia through time. However, the fidelity of this novel paleoredox proxy relies on characterization of uranium isotope geochemistry via laboratory experimental studies and field work in modern analog environmental settings. This dissertation systematically examines the fidelity of 238U/235U in sedimentary carbonate rocks as a paleoredox proxy focusing on the following issues: (1) U isotope fractionation during U incorporation into primary abiotic and biogenic calcium carbonates; (2) diagenetic effects on U isotope fractionation in modern shallow-water carbonate sediments; (3) the effects of anoxic depositional environments on 238U/235U in carbonate sediments.
Variable and positive shifts of 238U/235U were observed during U uptake by primary abiotic and biotic calcium carbonates, carbonate diagenesis, and anoxic deposition of carbonates. Previous CaCO3 coprecipitation experiments demonstrated a small but measurable U isotope fractionation of ~0.10 ‰ during U(VI) incorporation into abiotic calcium carbonates, with 238U preferentially incorporated into the precipitates (Chen et al., 2016). The magnitude of U isotope fractionation depended on aqueous U speciation, which is controlled by water chemistry, including pH, ionic strength, carbonate, and Ca2+ and Mg2+ concentrations. Based on this speciation-dependent isotope fractionation model, the estimated U isotope fractionation in abiotic calcium carbonates induced by secular changes in seawater chemistry through the Phanerozoic was predicted to be 0.11–0.23 ‰. A smaller and variable U isotope fractionation (0–0.09 ‰) was observed in primary biogenic calcium carbonates, which fractionated U isotopes in the same direction as abiotic calcium carbonates. Early diagenesis of modern shallow-water carbonate sediments from the Bahamas shifted δ238U values to be 0.270.14 ‰ (1 SD) higher than contemporaneous seawater. Also, carbonate sediments deposited under anoxic conditions in a redox-stratified lake—Fayetteville Green Lake, New York, USA— exhibited elevated δ238U values by 0.160.12 ‰ (1 SD) relative to surface water carbonates with significant enrichments in U.
The significant U isotope fractionation observed in these studies suggests the need to correct for the U isotopic offset between carbonate sediments and coeval seawater when using δ238U variations in ancient carbonate rocks to reconstruct changes in ocean anoxia. The U isotope fractionation in abiotic and biogenic primary carbonate precipitates, during carbonate diagenesis, and under anoxic depositional environments provide a preliminary guideline to calibrate 238U/235U in sedimentary carbonate rocks as a paleoredox proxy. / Dissertation/Thesis / Doctoral Dissertation Geological Sciences 2018
|
200 |
A search for biologically active compounds in Acacia (Mimosaceae) speciesWickens, Kristen M. January 1900 (has links)
Thesis (Masters of Science)--Curtin University of Technology, 2003. / Title from PDF t.p. (viewed Mar. 3, 2007). "November 2003." Includes bibliographical references.
|
Page generated in 0.0369 seconds