• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 93
  • 35
  • 13
  • 7
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 212
  • 212
  • 142
  • 32
  • 27
  • 27
  • 26
  • 23
  • 23
  • 23
  • 21
  • 20
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Modelo pseudocinético para a simulação numérica da combustão in-situ na escala da campo / Pseudokinetic model for field-scale simulation of in-situ combustion

Mercado Sierra, Diana Patricia, 1981- 28 August 2018 (has links)
Orientador: Osvair Vidal Trevisa / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica e Instituto de Geociências / Made available in DSpace on 2018-08-28T00:16:54Z (GMT). No. of bitstreams: 1 MercadoSierra_DianaPatricia_D.pdf: 5821830 bytes, checksum: 86d0611dd821cb67544d7463dfed3a39 (MD5) Previous issue date: 2015 / Resumo: A combustão in-situ é um processo multiescala, multifísico que envolve simultaneamente o escoamento de fluidos no meio poroso, o equilíbrio de fases e a cinética das reações químicas. A simulação desse processo tem alcançado um elevado grau de desenvolvimento, no entanto, mecanismos básicos ainda são representados de maneira incompleta, impondo inúmeros desafios na modelagem. A dificuldade de modelar fenômenos relacionados com a combustão tem a ver com a representação do efeito da frente de combustão e a modelagem do consumo de combustível. Na combustão in-situ as reações químicas acontecem em uma zona delgada de menos de um metro de espessura, que é pequena quando comparada com a escala do reservatório de centenas ou milhares de metros. Na simulação na escala de campo, o uso de células de tamanho maior do que a zona de reação leva a erros na distribuição da temperatura. Consequentemente, a velocidade das reações não pode ser bem representada. De outro lado, os simuladores não permitem controlar a ocorrência das reações a partir da energia de ativação. Como resultado, o início das reações se torna independente da temperatura. O objetivo desta tese é desenvolver um modelo pseudocinético para a simulação numérica da combustão in-situ na escala de campo. Com o modelo pseudocinético pretende-se representar os fenômenos na zona de combustão, reduzindo o efeito do tamanho de célula. O trabalho foi desenvolvido em etapas. Primeiro foram estabelecidas as condições que o simulador deveria atender e definida a estratégia de abordagem, que foi a de desenvolver um modelo pseudocinético. Depois foi definida a metodologia de obtenção do modelo pseudocinético. Após o modelo pseudocinético concluído, este foi utilizado para a simulação de um campo de óleo pesado brasileiro submetido à combustão in-situ. O modelo pseudocinético proposto consiste em expressar a energia de ativação das reações em função da temperatura. Através do modelo, é possível restringir a ocorrência da reação de craqueamento, de modo que o início da formação do coque aconteça somente para temperaturas acima dos valores observados na zona de craqueamento. Note-se que neste cenário a quantidade de coque depositado pode ser modelada usando a reação de craqueamento, o que se constitui numa das principais contribuições do trabalho. O modelo permite manter a dependência da taxa de reação com a temperatura mediante o uso de valores de energia de ativação apropriados. Além disso, consegue-se reduzir o efeito da distribuição de temperatura mediante o controle da taxa de reação em função dos valores médios de temperatura observados nas células do modelo de simulação na escala de campo. Na simulação do piloto de combustão in-situ, o modelo pseudocinético foi obtido do ajuste progressivo dos parâmetros cinéticos das reações químicas, partindo da simulação do processo na escala de laboratório até a escala de campo. Os dados experimentais utilizados na simulação na escala de laboratório foram obtidos de um ensaio em tubo de combustão seca realizado no Laboratório de Métodos Térmicos de Recuperação do Departamento de Energia da UNICAMP. O fluido utilizado foi um óleo pesado de 15,3 °API proveniente da Bacia do Espírito Santo / Abstract: The in-situ combustion is a multi-scale, multi-physics process, involving fluid flow in porous media, thermodynamic equilibrium of the phases involved and chemical kinetics of reactions. The simulation of this process has achieved a high degree of development, however basic mechanisms are still represented incompletely, imposing numerous challenges in modeling. The issues in the combustion modeling are related with the representation of the combustion front effect and the fuel consumption modeling. Chemical reactions of the in-situ combustion process take place in a thin zone of less than a meter thick, which is small compared to the field scale of hundreds or thousands of meters. Numerical simulations at the field scale typically use grid blocks that are at least two orders of magnitude greater than that. Such divergence leads to improper representations of key aspects of the process, as the temperature distribution and the reaction kinetics. In accordance with that the reaction occurrence is not controlled by the activation energy in the simulation models. The major shortcome is on fuel deposition, a key issue in in-situ combustion, which will happen from the start, since the cracking reaction may proceed even at reservoir temperature. The objective of this thesis is to develop a new pseudokinetic model for field-scale simulation of in-situ combustion. With the pseudokinetic model meant to improve the representation of the combustion zone effects reducing the gridblock size effect. The work was carried out in stages. First establishes the conditions that the simulator should meet and defined the strategy to develop a pseudokinetic model. Then a methodology was defined for obtaining the pseudokinetic model. After the pseudokinetic model is completed, it is applied to the in-situ combustion modeling of a Brazilian heavy oil field. The models pursue the idea of making the activation energy a function of the grid block temperature. The model allows restricting the cracking reaction occurrence by the temperature, so that the beginning of the coke deposition occurs at temperatures greater than the temperature observed in the cracking zone. Note that in this scenario the cracking reaction can be used to represent the coke deposition, which constitutes one of the main contributions of this work. The model allows maintaining the dependence of reaction rate with temperature through the use of appropriate activation energy values. Furthermore, the model reduces the temperature distribution effect by controlling the reaction rate based on average temperature values observed in the field simulation model. In the simulation of the in-situ combustion pilot, the pseudokinetic model was obtained from the progressive tuning of the kinetic parameters of chemical reactions, based on the simulation of the process from the laboratory to field scale. The experimental data used in the laboratory scale simulation were obtained from a dry combustion tube test carried out at the Thermal Recovery Methods Laboratory of the Energy Department at UNICAMP. The fluid used was a 15.3 ° API heavy oil from the Espírito Santo Basin / Doutorado / Reservatórios e Gestão / Doutora em Ciências e Engenharia de Petróleo
182

COMPLEX FLUIDS IN POROUS MEDIA: PORE-SCALE TO FIELD-SCALE COMPUTATIONS

Soroush Aramideh (8072786) 05 December 2019 (has links)
Understanding flow and transport in porous media is critical as it plays a central role in many biological, natural, and industrial processes. Such processes are not limited to one length or time scale; they occur over a wide span of scales from micron to Kilometers and microseconds to years. While field-scale simulation relies on a continuum description of the flow and transport, one must take into account transport processes occurring on much smaller scales. In doing so, pore-scale modeling is a powerful tool for shedding light on processes at small length and time scales.<br><br>In this work, we look into the multi-phase flow and transport through porous media at two different scales, namely pore- and Darcy scales. First, using direct numerical simulations, we study pore-scale Eulerian and Lagrangian statistics. We study the evolution of Lagrangian velocities for uniform injection of particles and numerically verify their relationship with the Eulerian velocity field. We show that for three porous media velocity, probability distributions change over a range of porosities from an exponential distribution to a Gaussian distribution. We thus model this behavior by using a power-exponential function and show that it can accurately represent the velocity distributions. Finally, using fully resolved velocity field and pore-geometry, we show that despite the randomness in the flow and pore space distributions, their two-point correlation functions decay extremely similarly.<br><br>Next, we extend our previous study to investigate the effect of viscoelastic fluids on particle dispersion, velocity distributions, and flow resistance in porous media. We show that long-term particle dispersion could not be modulated by using viscoelastic fluids in random porous media. However, flow resistance compared to the Newtonian case goes through three distinct regions depending on the strength of fluid elasticity. We also show that when elastic effects are strong, flow thickens and strongly fluctuates even in the absence of inertial forces.<br><br>Next, we focused our attention on flow and transport at the Darcy scale. In particular, we study a tertiary improved oil recovery technique called surfactant-polymer flooding. In this work, which has been done in collaboration with Purdue enhanced oil recovery lab, we aim at modeling coreflood experiments using 1D numerical simulations. To do so, we propose a framework in which various experiments need to be done to quantity surfactant phase behavior, polymer rheology, polymer effects on rock permeability, dispersion, and etc. Then, via a sensitivity study, we further reduce the parameter space of the problem to facilitate the model calibration process. Finally, we propose a multi-stage calibration algorithm in which two critically important parameters, namely peak pressure drop, and cumulative oil recovery factor, are matched with experimental data. To show the predictive capabilities of our framework, we numerically simulate two additional coreflood experiments and show good agreement with experimental data for both of our quantities of interest.<br><br>Lastly, we study the unstable displacement of non-aqueous phase liquids (e.g., oil) via a finite-size injection of surfactant-polymer slug in a 2-D domain with homogeneous and heterogeneous permeability fields. Unstable displacement could be detrimental to surfactant-polymer flood and thus is critically important to design it in a way that a piston-like displacement is achieved for maximum recovery. We study the effects of mobility ratio, finite-size length of surfactant-polymer slug, and heterogeneity on the effectiveness of such process by looking into recovery rate and breakthrough and removal times.
183

Einfluss akustischer Wellen auf Mehrphasenströmung in porösen Medien: Entwicklung eines EOR-Verfahrens

Reichmann, Sven 08 August 2018 (has links)
Inhalt der Arbeit sind theoretische und experimentelle Untersuchungen zum Einfluss akustischer Wellen auf das Verhalten mehrphasiger Strömungen in porösen Medien. Die Arbeit schlug mittels Frequenzanalyse Anregungsfrequenzen mit erhöhter Wahrscheinlichkeit den Strömungsvorgang positiv für die Erdölförderung zu beeinflussen. Die vorgeschlagenen Frequenzen erzielten auf verschiedenen Parametern erfolgreich eine positive Beeinflussung des Wasserdurchbruchspunktes, des Entölungsgrades und der relativen Permeabilität. Zur Erhöhung der Aussagekraft der Daten wurden Verfahren der multivariaten Statistik erfolgreich eingesetzt. Zudem wurden positive Rückkopplungseffekte mit dem Einsatz oberflächenaktiver Substanzen nachgewiesen. In einem abschließenden Schritt konnte die Wirkung des Verfahrens zudem durch Kombination mehrere Frequenzen optimiert werden. Diese von hoher Wichtigkeit geprägten Charakteristika zeigen klar das Potential des Verfahrens zum Einsatz als Verfahren der verbesserten Erdölförderung (EOR) auf.:1. Kurzfassung 5 2. Einleitung 6 2.1. Die primäre und sekundäre Förderphase 7 2.2. Tertiäre Fördermethoden 9 2.3. Akustische Verfahren 14 2.4. Aufgabenstellung 17 3. Grundlagen 18 3.1. Projektvorstellung 19 3.1.1. Vorstellung der Sonde 20 3.1.2. Eingrenzung der Laborparameter 22 3.2. Einordnung des Verfahrens in den Stand der Technik 23 3.2.1. Impuls- und Frequenzverfahren 23 3.2.2. Frequenzbereiche 25 3.3. Auswertemethoden 27 3.3.1. Frequenzanalysen 27 3.3.2. Flutversuche und relative Permeabilität 28 3.3.3. Imbibitionsversuche 32 3.4. Grundlagen der mathematischen Methoden 33 3.4.1. Fouriertransformation 34 3.4.2. Gradientenverfahren 34 3.4.3. Regressionsanalyse 37 4. Laborarbeiten 39 4.1. Versuchsaufbau 39 4.1.1. Flutanlage 39 4.1.2. Imbibitionsgefäße 42 4.2. Versuchsdurchführung 44 4.3. Der Versuchsplan der Flutexperimente 48 4.4. Voruntersuchungen 49 4.4.1. Gesteinsproben 49 4.4.2. Fluidproben 50 5. Datenauswertung 52 5.1. Frequenzanalyse 52 5.2. Flutversuche 55 5.2.1. Ergebnis der Regressionsanalyse 59 5.3. Imbibitionsversuche 61 5.4. Phänomenologische Untersuchungen 63 5.4.1. Injektivitätsveränderung 63 5.4.2. Instabile Emulsionsbildung 65 5.5. Weitergehende Forschungsansätze 67 5.5.1. Rückkopplungseffekte mit Tensiden 67 5.5.2. Bohrlochregeneration 69 6. Diskussion 71 7. Zusammenfassung 75
184

[pt] ANÁLISE EM MICROESCALA DA FORMAÇÃO DE ESPUMA E INJEÇÃO ALTERNADA DE SURFACTANTE E GÁS EM MICROMODELOS DE MEIOS POROSOS / [en] MICROSCALE ANALYSIS OF FOAM FORMATION AND SURFACTANT-ALTERNATING-GAS INJECTION IN POROUS MEDIA MICROMODELS

NICOLLE MIRANDA DE LIMA 11 January 2022 (has links)
[pt] A espuma é amplamente usada em operações de recuperação de óleo para melhorar a eficiência de varrido, em operações de armazenamento de gás e acidificação, e para resolver problemas causados por zonas ladras ou segregação gravitacional. A espuma, que pode ser pré-formada e injetada no reservatório ou produzida in situ através da geometria do meio poroso, escoa nas regiões de alta permeabilidade e desvia o fluido de deslocamento na direção do óleo aprisionado, reduzindo a permeabilidade relativa ao gás e levando a uma frente de deslocamento mais estável. A eficiência desses processos depende muito da geração e estabilidade dos filmes de espuma (lamelas) que residem nos poros. A mobilidade do gás injetado é reduzida quando a espuma é formada; esta redução é atribuída ao aumento da viscosidade efetiva do gás e à redução da permeabilidade relativa ao gás. As lamelas formadas criam resistência ao fluxo do gás, impedindo seu movimento livre dentro do meio poroso. A população de lamelas que compõe a espuma está diretamente relacionada com a concentração de surfactante, e seu fluxo e mobilidade são funções da geometria dos poros e das propriedades da espuma. No entanto, a dinâmica da formação de espuma em meios porosos não é totalmente compreendida devido à sua complexidade O objetivo da primeira parte desta pesquisa é compreender o impacto do aumento da concentração de surfactante na formação de espuma durante a injeção de gás em um modelo bidimensional de meio poroso de vidro saturado com uma solução de surfactante. A segunda parte foca na formação de espuma e sua implicação no deslocamento de óleo durante o processo de injeção SAG (injeção alternada de solução de surfactante e gás) considerando diferentes concentrações de surfactante. Uma configuração microfluídica composta por micromodelo de vidro, bomba de seringa, transdutor de pressão e microscópio foi usada para visualizar o deslocamento da escala dos poros e correlacionar a evolução da formação das lamelas durante o processo de injeção com a diferença de pressão para diferentes condições de fluxo através do processamento de imagem. A dinâmica de formação das lamelas é relatada e relacionada ao comportamento do fluxo macroscópico. / [en] Foam is widely used in oil recovery operations to improve sweep efficiency, in gas storage and acidization operations, and to solve problems caused by either a thief zone or gravity override. Foam, which can be preformed and injected into the reservoir or produced in situ through the pore space, fills the high permeability areas known as thief zones and diverts the displacing fluid into the direction of trapped oil, reducing the relative permeability of gas and leading to a more stable displacement front. The efficiency of these processes largely depends on the generation and stability of the foam films (lamellae) residing in the pores. The mobility of the injected gas is reduced when foam is formed; this reduction is attributed to the reduction of the gas phase relative permeability. The lamellae formed create resistance against the gas flow, impeding its free motion inside the porous media. The lamellae population that composes the foam is directly related to surfactant concentration, and their flow and mobility are functions of the pore geometry and foam properties. However, the dynamics of foam formation in porous media is not fully understood due to its complexity. The goal of the first part of this research is to understand the impact of increasing surfactant concentration on foam formation during gas injection in a two-dimensional porous media glass model occupied by a surfactant solution. The second part focuses on foam formation and its implications for oil displacement during the SAG (surfactant-alternating-gas) injection, considering different surfactant concentrations. A microfluidic setup composed of a glass micromodel, syringe pump, pressure transducer and microscope, was used to visualize the pore-scale displacement and correlate the evolution of lamellae formation during the injection process with pressure difference for different flow conditions through image processing. The dynamics of lamellae formation is reported and related to macroscopic flow behavior.
185

[en] FLOW SIMULATION OF MACRO-EMULSION FLOODING AT STRATIFIED RESERVOIRS CONSIDERING CAPILLARY EFFECTS / [pt] SIMULAÇÃO DA INJEÇÃO ALTERNADA DE ÁGUA-EMULSÃO-ÁGUA CONSIDERANDO EFEITOS CAPILARES EM MODELOS DE RESERVATÓRIOS ESTRATIFICADOS

HELENA ASSAF TEIXEIRA DE SOUZA MOTA LIMA 12 December 2016 (has links)
[pt] O aumento do fator de recuperação e o uso de métodos de recuperação avançada no atual cenário de novos patamares de preços representam um enorme desafio para a indústria do petróleo. Neste contexto, o uso de emulsões óleo-água como um método de recuperação avançada torna-se bastante atrativo. Diversos trabalhos mostraram um aumento no volume de óleo produzido através da injeção de emulsões óleo-água. Resultados de pesquisas experimentais indicam que a injeção de emulsões pode ser utilizada como agente de controle de mobilidade, bem como reduzindo a saturação residual de óleo. A aplicação do método de injeção alternada água-emulsão-água (WAE) requer o entendimento do escoamento de emulsões no meio poroso e dos mecanismos responsáveis pela melhora na recuperação. Este entendimento tanto na escala de poros como na escala de reservatórios permite incorporação destes mecanismos na modelagem para simulação de fluxo de reservatórios. No presente trabalho foi feita a incorporação dos efeitos gravitacionais no modelo desenvolvido para o escoamento de emulsões em meios porosos através da parametrização das curvas de permeabilidade relativa em função da concentração de gotas e do Número de Capilaridade. O processo WAE foi avaliado através de simulações em duas e três dimensões (2D/3D) utilizando um conjunto de camadas do segundo modelo comparativo do SPE10. Com simulações 2D e 3D foi possível realizar um estudo de sensibilidade do processo em relação ao momento da injeção de emulsão, o tamanho do banco, e as faixas de vazão e respectivos números de capilaridades de atuação da emulsão. / [en] In the current crude oil price scenario, the increase in oil recovery factor and the use of enhanced recovery methods represent a major challenge for the Oil Industry. In this context, the use of oil-water emulsion flooding as an enhanced recovery method becomes very attractive. Several studies have shown a significant potential to increase oil volume recovery by the injection of oil-water emulsions. Experimental results indicate that the emulsions injection can be used as a mobility control agent, resulting in a more uniform fluid displacement in the reservoir and lower residual oil saturation. Based on these experimental results, the most relevant parameters for emulsion injection performance effectiveness are droplet size, the local concentration of the dispersed phase of the emulsion and the local capillary number. The application of water alternating emulsion injection (WAE) method requires understanding of the flow of emulsions in porous media and the mechanisms responsible for the improved recovery. The understanding of this process in both porous scale and reservoir scale is fundamental to model emulsion injection effects in reservoir flow simulation. In this work, the gravitational effects was incorporated in the macroscopic model to represent flow of emulsions in porous media by relative permeability curves parametrization as function of emulsion concentration and of the local capillary number. The WAE process was evaluated in two and three dimensional simulations (2D / 3D) using a set of layers of the second SPE 10 comparative model. With 2D and 3D simulations, it was possible to explore a WAE injection performance sensitivity analysis considering the time at which the emulsion injection is started, the size of emulsion bank, and the injection flow rates and consequently the flow their capillary number.
186

[pt] ESTUDO EXPERIMENTAL DA INJEÇÃO DE SOLUÇÃO POLIMÉRICA EM ARENITOS / [en] EXPERIMENTAL STUDY OF POLYMERIC SOLUTION INJECTION IN SANDSTONES

ADEMIR FREIRE DE MEDEIROS 31 January 2022 (has links)
[pt] Após uma jazida de petróleo ser encontrada, a produção de óleo ou gás é feita através de um poço produtor que é perfurado até atingir as camadas de rocha onde os hidrocarbonetos estão alojados. Com a constante produção, a pressão de reservatório decresce até atingir um nível que é insuficiente para o aproveitamento econômico. Geralmente, utiliza-se a injeção de água para manter o nível de pressão do reservatório. Nos estudos de um reservatório de petróleo é fundamental o conhecimento de propriedades básicas da rocha e dos fluidos nela contidos. São essas propriedades que determinam as quantidades de fluidos existentes no meio poroso, a sua distribuição, a capacidade desses fluidos se moverem e, mais importante, a quantidade de fluidos que pode ser extraída. Através do método convencional de injeção de água objetiva-se a manutenção da pressão do reservatório e o deslocamento de óleo em direção aos poços produtores. A água (fluido deslocante) tende a ocupar gradualmente o espaço antes ocupado pelo óleo (fluido deslocado), contudo, por efeitos capilares, uma parcela do óleo não é retirada do meio poroso configurando o que chamamos óleo residual. Em função da razão de mobilidade da água e do óleo, a frente de deslocamento não é uniforme, e um grande volume do reservatório não é atingido pela água de injeção. A adição de polímero à água de injeção visa o aumento da viscosidade da água, e assim, melhorar a razão de mobilidade água-óleo, aumentando a eficiência de varrido uma vez que uniformiza a frente de avanço, reduzindo a formação de caminhos preferenciais no reservatório. Além de diminuir a razão de mobilidade, soluções poliméricas podem contribuir para um melhor deslocamento de óleo em escala de poro, a partir de seu efeito elástico, reduzindo, portanto, a saturação de óleo residual. Contudo, tal mecanismo em micro-escala, ou seja, em escala de poro não é totalmente compreendido. O presente trabalho preocupa-se principalmente em analisar o fator de recuperação do óleo e saturação de óleo residual após processo de deslocamento de óleo por água salgada, solução polimérica de poliacrilamida parcialmente hidrolisada (HPAM) e solução de glicerina em testemunhos de Arenito Bentheimer. Um porta-testemunho especial foi utilizado para a realização dos testes de deslocamento, sendo monitoradas a variação de pressão ao longo da amostra, além dos volumes de injeção e produção de fluidos em função do tempo. / [en] After an oil deposit is found, oil or gas is produced through a production well that is drilled until it reaches the rock layers where the hydrocarbons are housed. With constant oil production, the reservoir pressure decreases until it reaches a level that is insufficient for economic use. Water injection is generally used to maintain the reservoir pressure level. It is essential to know the basic rock and fluid properties to study an oil reservoir. These properties determine the volume of fluids in the porous medium, their distribution, the ability of these fluids to move, and most importantly, the volume of fluids that can be extracted. The conventional water injection method aims to maintain the reservoir pressure and the oil displacement towards the producing wells. Water (displacing fluid) tends to gradually occupy the space previously occupied by oil (displaced fluid), however, due to capillary effects, an oil portion is not removed from the porous medium, configuring what we call residual oil. Because of the water-oil mobility ratio, the displacement front is not uniform and a large volume of the reservoir is not reached by the injection water. Polymer addition in the injection water aims at increasing water viscosity, and thus, improving the water-oil mobility ratio, increasing the sweeping efficiency since it unifies the advance front, reducing the formation of preferential paths in the reservoir. Besides reducing the mobility ratio, polymeric solutions can contribute to a better oil displacement in pore-scale, based on its elastic effect, reducing residual oil saturation. However, this mechanism is not fully understood in the micro-scale. The present work is concerned with analyzing oil recovery factor and residual oil saturation after the oil displacement process by saltwater, polymeric solution of partially hydrolyzed polyacrylamide (HPAM), and glycerin solution in sandstone Bentheimer samples. A special core holder was used to displacement tests, the injection differential pressure on the sample was monitored, in addition to the injection volumes and production volume as a function of time.
187

Carbon Dioxide Capture from Power Plant Flue Gas using Regenerable Activated Carbon Powder Impregnated with Potassium Carbonate

Ebune, Guilbert Ebune 16 September 2008 (has links)
No description available.
188

[pt] DESLOCAMENTO DE ÓLEO EM UM MEIO POROSO ATRAVÉS DE INJEÇÃO DE EMULSÕES ÓLEO-EM-ÁGUA: ANÁLISE DE FLUXO LINEAR / [en] OIL DISPLACEMENT IN A POROUS MEDIA THROUGH INJECTION OF OIL-IN-WATER EMULSION: ANALYSIS OF LINEAR FLOW

VICTOR RAUL GUILLEN NUNEZ 27 September 2007 (has links)
[pt] A injeção de emulsão é um método comum para melhorar o varrido do reservatório e manter-lo pressurizado. A eficiência de recuperação de óleo no caso de óleos pesados é limitada pela alta razão de mobilidade entre a água injetada e o óleo. Um método de reduzir o problema relativo µa alta razão de viscosidade é por injeção de soluções poliméricas. Porem, a interação líquido- rocha, os grandes volumes e o preço associado dos polímeros podem fazer esta técnica não aplicável em caso de campos gigantes. Diferentes métodos de recuperação avançada de óleo estão sendo desenvolvidos como alternativas µa injeção de polímeros. A injeção de dispersões, em particular a injeção de emulsões, têm sido tratadas com relativo sucesso como um método de recuperação avançada de óleo, mas as técnicas não são totalmente desenvolvidas ou compreendidas. O uso de cada método requer uma completa análise dos diferentes regimes de fluxo de emulsões dentro do espaço poroso de um reservatório. A maioria das análises de fluxo de emulsões em um meio poroso utiliza uma descrição macroscópica. Esta aproximãção é só valida para emulsões com o tamanho da fase dispersa muito menor do que o tamanho do poro. Se o tamanho de gota da fase dispersa é da mesma ordem de magnitude do tamanho de poro, as gotas podem aglomera-se e particularmente podem bloquear o fluxo através dos poros. Este regime de fluxo pode ser utilizado para controlar a mobilidade do líquido injetado, conduzindo a um fator de recuperação maior. Neste trabalho, experimentos de deslocamento de óleo foram executados em um corpo de prova de arenito. Os resultados mostram que a injeção de uma emulsão mudou o fator de recuperação de óleo, elevando este desde 40%, obtido só por injeção de água, ate um valor aproximado de 75%, seja em modo primario ou depois do influxo da água. / [en] Water injection is a common method to improve the reservoir sweep and maintain its pressure. The e±ciency of oil recovery in the case of heavy oils is limited by the high mobility ratio between the injected water and oil. A method of reducing the problem related to the high viscosity ratio is by polymer solution injection. However, the liquid-rock interaction, the large volume and the associated cost of polymer may make this technique not applicable in the case of giant fields. Different enhanced oil recovery methods are being developed and studied as alternatives to polymer injection. Dispersion injection, in particular oil-water emulsion injection, has been tried with relative success as an enhanced oil recovery method, but the techniques are not fully developed or understood. The use of such methods requires a complete analysis of the different flow regimes of emulsions inside the porous space of a reservoir. Most analyses of flow of emulsion in a porous media use a macroscopic description. This approach is only valid for dilute emulsion which the size of the disperse phase is much smaller of the pore throat. If the drop size of the disperse phase is of the same order of magnitude of the pore size, the drops may agglomerate and partially block the flow through pores. This flow regime may be used to control the mobility of the injected liquid, leading to higher recovery factor. In this work, experiments of oil displacement were performed in a sandstone plug. The results show that injection of an emulsion changed the oil recovery factor, raising it from approximately 40%, obtained with water injection alone, to approximately 75%, whether in primary mode or after water flooding.
189

[pt] INJEÇÃO DE SOLUÇÕES POLIMÉRICAS EM ARENITOS / [en] POLYMER FLOODING IN SANDSTONE CORES

THIAGO DOS SANTOS PEREIRA 12 June 2019 (has links)
[pt] A adição de polímeros à água de injeção é um dos métodos de recuperação avançada mais utilizados devido a capacidade desses compostos, de alta massa molar, de aumentar, de maneira significativa, a viscosidade da solução mesmo em baixas concentrações. O incremento na viscosidade da solução possibilita a diminuição da razão de mobilidade entre os fluidos, melhorando o deslocamento do óleo. Porém, há uma infinidade de fatores relacionados ao uso dessas substâncias que podem modificar significativamente as características originais do meio poroso, afetando permanentemente a produtividade do reservatório. De maneira a tentar entender melhor esses mecanismos, realizou-se neste estudo a revisão das características relacionadas à injeção de soluções poliméricas, e efetuou-se uma análise experimental para estudar os processos de adsorção polimérica e recuperação de óleo. Utilizou-se três tipos de amostras de rochas com diferentes características petrofísicas. Primeiramente foram realizados testes de adsorção de polímeros nas formações em condições de trabalho específicas através do Two Slug Method. Em seguida, realizou-se um estudo do processo de recuperação de óleo através da injeção de diferentes fases aquosas: água com composição semelhante a do campo de Peregrino, solução polimérica de HPAM e solução de glicerina com água com a mesma viscosidade da solução polimérica. Os resultados mostraram a eficiência do Two Slug Method em testes de adsorção e da utilização de soluções poliméricas nos processos de recuperação de óleo. / [en] The addition of polymers to the injection water is one of the most used oil enhanced recovery method because of the ability of these compounds to increase the viscosity of the solution even at low concentrations. This increase of the water phase viscosity promotes the reduction of the mobility ratio between fluids, improving the displacement of oil. However, there is a large number of factors related to the use of these substances that can significantly modify the original characteristics of the porous medium, affecting the useful life of the oil field. In order to better understand these mechanisms, a review of the characteristics related to polymer-flooding, and an experimental analysis were carried out to verify polymer adsorption mechanism and oil recovery processes. Three types of core samples with different petrophysical characteristics were used. Tests were carried out to study polymer adsorption on formations under specific working conditions by using the Two Slug Method. Then, oil recovery tests were performed with the injection of different water phases: water with composition similar to Peregrino field water, polymer solution and glycerol- water solution with the same viscosity of the polymer solution. Results showed the efficiency of the Two Slug Method in adsorption tests and the use of polymer solutions in oil recovery processes.
190

THE DEVELOPMENT OF MASS SPECTROMETRIC METHODS FOR THE DETERMINATION OF THE CHEMICAL COMPOSITION OF COMPLEX MIXTURES RELEVANT TO THE ENERGY SECTOR AND THE DEVELOPMENT OF A NEW DEVICE FOR CHEMICALLY ENHANCED OIL RECOVERY FORMULATION EVALUATION

Katherine Elisabeth Wehde (8054564) 28 November 2019 (has links)
<p>This dissertation focused on the development of mass spectrometric methodologies, separation techniques, and engineered devices for the optimal analysis of complex mixtures relevant to the energy sector, such as alternative fuels, petroleum-based fuels, crude oils, and processed base oils. Mass spectrometry (MS) has been widely recognized as a powerful tool for the analysis of complex mixtures. In complex energy samples, such as petroleum-based fuels, alternative fuels, and oils, high-resolution MS alone may not be sufficient to elucidate chemical composition information. Separation before MS analysis is often necessary for such highly complex energy samples. For volatile samples, in-line two-dimensional gas chromatography (GC×GC) can be used to separate complex mixtures prior to ionization. This technique allows for a more accurate determination of the compounds in a mixture, by simplifying the mixture into its components prior to ionization, separation based on mass-to-charge ratio (<i>m/z</i>), and detection. A GC×GC coupled to a high-resolution time-of-flight MS was utilized in this research to determine the chemical composition of alternative aviation fuels, a petroleum-based aviation fuel, and alternative aviation fuel candidates and blending components as well as processed base oils.</p> Additionally, as the cutting edge of science and technology evolve, methods and equipment must be updated and adapted for new samples or new sector demands. One such case, explored in this dissertation, was the validation of an updated standardized method, ASTM D2425 2019. This updated standardized method was investigated for a new instrument and new sample type for a quadrupole MS to analyze a renewable aviation fuel. Lastly, the development and evaluation of a miniaturized coreflood device for analyzing candidate chemically enhanced oil recovery (cEOR) formulations of brine, surfactant(s), and polymer(s) was conducted. The miniaturized device was used in the evaluation of two different cEOR formulations to determine if the components of the recovered oil changed.

Page generated in 0.1144 seconds