41 |
Cenozoic terrestrial palaeoenvironemtal change : an investigation of the Petrockstowe and Bovey basins, south west United KingdomChaanda, Mohammed Suleiman January 2016 (has links)
The Petrockstowe and Bovey basins are two similar pull apart (strike slip) basins located on the Sticklepath – Lustleigh Fault Zone (SLFZ) in Devon, SW England. The SLFZ is one of the several faults on the Cornubian Peninsula and may be linked to Variscan structures rejuvenated in Palaeogene times. The bulk of the basins’ fill consists of clays, silts, lignites and sands of Palaeogene age, comparable to the Lough Neagh Basin (Northern Ireland), which is also thought to be part of the SLFZ. In this study a multiproxy approach involving sedimentary facies analysis, palynological analysis, stable carbon isotope (δ13C) analysis and organic carbon palaeothermometer analyses were applied in an attempt to understand the depositional environment in both basins. A negative carbon isotope excursion (CIE) with a magnitude of 2‰ was recorded at ~ 580 m in the siltstone, silty clay to clay lithofacies in the lower part of Petrockstowe Basin, with minimum δ13CTOC values of -28.6‰. The CIE spans a depth of 7 m. Palynological characteristics of this excursion are correlated with the Cogham Lignite in the southern UK, which is the only established PETM section in the UK, and other continental sections to test whether the palynology associated with this CIE can be used to date it. The age model proposed herein correlates the CIE to the Eocene Thermal Maximum -2 (ETM2; ~ 52.5Ma) event. Key pollen and spore assemblages found in the lower Petrockstowe Basin are Monocolpopollenites, Inaperturopollenites, Laevigatisporites, Bisaccate conifer pollen and Tricolporopollenites, which suggest an Eocene age, while those occurring in the upper part of the Petrockstowe and Bovey basins are Arecipites, Inaperturopollenites, Monocolpopollenites, Tricolporopollenites, Sequoiapollenites, and Pompeckjodaepollenites, which have suggested botanical affinities to modern tropical to sub-tropical genera signifying a climate that was frost-free at the time of sediment deposition. This assemblage further suggests that these sediments are Oligocene to middle Oligocene in age. In the upper part of the Petrockstowe Basin, reconstructed mean annual air temperatures (MAT) demonstrate a clear departure from the mean temperature of 24.5oC at 10 m to 19.5oC towards the top of the core, indicating a steady continuous decline similar to the temperature departures seen in the Solent Group in the Hampshire Basin, Isle of Wight, UK which has an established Eocene – Oligocene succession.
|
42 |
Neovulkanity SZ části mostecké pánve v prostoru uhelných lomů elektrárny Tušimice / Neovolcanic Rocks of the SW part of the Most Basin in the area of Tušimice power plant open pitSobotka, Martin January 2016 (has links)
Diploma thesis deals with geological, petrological and geochemical studies of neovolcanic rocks of the SW part of the Most Basin in the area of Tušimice power plant open pit. There are two lava flows affected by coal mining in northern part of the mine. Petrological and geochemical studies with K-Ar dating relatively recent rocks in mostly weatherworn volcanic rocks showed, that they can be classified as Ti-rich basaltic rocks without olivine (tephrites), which belong to the main volcanic phase in the evolution of the Eger graben. It was evidenced geologicaly and with K-Ar dating, that studied rocks were seperated from underlying beda by hiatus which caused erosion of volcanic rocks as well as crystalline bedrock. Mmajor and trace elements composition of co-magmactic volcanics showed that rock were derived from two slightly different sources of upper mantle. Composition of two samples indicates the formation from low degree of partial melting strongly metasomatic asthenospheric mantle. Chemical features of volcanic rocks show that mantle source was comparamble to recent OIB basalts. Last sample arose from less metasomatized and depth distincted mantle which was affected by higher level of partial melting. Melts from which crystallized both rocks were minimaly affected by asimilation or...
|
43 |
Patterns and processes in animal evolution : molecular phylogenetics of Southern Hemisphere fauna : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in GeneticsPratt, Renae January 2008 (has links)
Three kinds of processes are known to modify the geographical spatial arrangement of organisms: dispersal, extinction and vicariance. The Southern Hemisphere has an intriguing and complicated geological history that provides an ideal backdrop to study these processes. This thesis focuses on three historical events that illustrate these processes: the proposed marine inundation of New Zealand in the Oligocene, the asteroid impact at the K – Pg boundary, and the continental breakup of Gondwana. It investigates what impact these events had on species diversification by studying the phylogenetic relationships of two groups of taxa – the family Anostostomatidae (insects), and Neoaves (birds). Anostostomatidae were studied in relation to the Oligocene drowning and the break up of Gondwana as they have a wide southern distribution, found on all “Gondwanan” fragments with the exception of Antarctica, and are thought represent an ancient lineage that predates the Gondwanan breakup. Birds, in particular Neoaves, were studied in relation to the asteroid impact at the K – Pg boundary. Although birds are mobile and many circumnavigate the globe between seasons, they are suggested to have originated in the Southern Hemisphere in Gondwanan times, and subsequently undergone range expansion and diversification around the world. In order to address the relationship (if any) between modern biotic diversity and historical geological events, phylogenetic relationships were determined and where possible, molecular clock analysis carried out. Timing information provided by molecular clock analysis is important as it enables distinction between opposing hypotheses such as vicariance and dispersal. In Chapter Two, the phylogenetic relationships within the family Anostostomatidae are investigated. One of the most controversial times in New Zealand’s geological history is during the Oligocene. Some suggest that the lack of fossils and evidence for recent dispersal of numerous taxa support the notion that all modern biota reached the region during the last 25 million years. Anostostomatidae were chosen as they represent a group of insects that are thought to be ancient and there is little published data in the literature. Previous studies focused on the relationships within Hemideina and Deinacrida suggesting that these groups diversified in the early Miocene. The data presented here are from mitochondrial (COI and 12S) and nuclear (18S and 28S) sequences. Molecular dating using a relaxed clock as implemented in BEAST suggest that in fact some lineages were present at or shortly after continental breakup and could have survived throughout this turbulent time. As there were no definitive fossils to use for calibration points, geological events were used as calibration points for the molecular clock. Mutation rates obtained from the different analyses were compared to those published for other insects in an attempt to identify the most likely model. Both maximum likelihood and Bayesian analyses support the presence of three distinct ecological groups in New Zealand; Hemiandrus (ground weta), Anisoura/Motuweta (tusked weta) and Hemideina–Deinacrida (tree–giant weta). With regards to their Australasian relatives (taxa from Australia and New Caledonia) it appears that the family is divided with the most northern New Zealand taxa (tusked weta) more closely related to New Caledonian taxa while all other New Zealand taxa are more closely related to Australian taxa. There does not appear to be any link between the Australian and New Caledonian taxa studied here. Results should be viewed with caution however as an increased mutation rate was observed in the New Caledonian-tusked weta lineage, something future studies will have to address. Chapter Three presents new sequence data and phylogenetic analyses that go towards resolving the apparent basal polytomy of neoavian birds. This chapter includes analyses carried out on previously published data with the addition of nine new mitochondrial genomes. My contribution to this larger project was to perform the phylogenetic analysis and to sequence three of the nine mitochondrial genomes. The genomes I sequenced were the Southern Hemisphere species: dollar bird (Eurystomus orientalis), Owlet nightjar (Aegotheles cristatus cristatus) and great potoo (Nyctibius grandis). The inclusion of these nine new genomes allows assessment and comparison of the six hypothesised groups reported in Cracraft (2001). First an improved conditional down-weighting technique is described reducing noise relative to signal, which is important for resolving deeper divergences. Second, a formula is presented for calculating probabilities of finding predefined groupings in the optimal tree. Maximum likelihood and Bayesian based phylogenetic analyses were carried out and in addition, dating using a relaxed molecular clock was performed in BEAST. Results suggested that the six groups suggested by Cracraft (2001) represent robust lineages. The results suggested that one group, the owls, are more closely related to other raptors, particularly accipitrids (buzzards/eagles) and the osprey rather than the Caprimulgiformes, which could indicate morphological convergent evolution. In addition, a group termed shorebirds appears to be distinct from the large group referred to as ‘Conglomerati’ to which previous publications have suggested they belong. The ‘Conglomerati’ is the least well studied group and may actually comprise of at least three subgroups (as suggested by Cracraft). Within the three suggested groups, Cracraft grouped shorebirds with pigeons and sandgrouse, neither of which (pigeons or sandgrouse) were analysed here. So although the shorebirds are at least close to the ‘Conglomerati’ and may be within that group, their exact position is still not clear. The molecular dating reported here utilised two fossil calibrations (Vegavis and Waimanu), for which there is relatively little dispute as to age or the lineage to which they belong. Calibrations resulting from BEAST analyses suggest that at least 12 distinct lineages were present prior to the K – Pg boundary, a finding supported by previous studies. Robust phylogenies will allow future studies to investigate not only the relationships within Neoaves, but look more closely at the biological and ecological evolution of the group. Chapter Four for the first time investigates whether the phylogenetic relationships within the family Anostostomatidae follow the conventionally accepted order and timing of Gondwanan breakup. Following the initial restults for taxa studied in Australasia (Chapter Two) an attempt to resolve family relationships in a wider spatial (geographic) context was carried out to determine if Australasian taxa are monophyletic when other members of the family are included. Again both maximum likelihood and Bayesian phylogenetic analyses were carried out on both mitochondrial (COI and 12S) and nuclear (18S and 28S) sequences. In this chapter, datasets included samples from across the geographic range of Anostostomatidae (South Africa, Madagascar, South America, Australia, New Caledonia and New Zealand), and two clades were observed, congruent with earlier findings. Sequence divergence within geographic regions was found to be relatively high in the mitochondrial genes (COI and 12S) while low in the nuclear ribosomal RNA genes (18S and 28S) as expected given their relative mutation rates. Under the vicariance paradigm, phylogenetic relationships should follow the order of continental breakup, but this was not found. Further, if dispersal and colonisation were continuous, no geographic substructure is expected, however distinct geographic substructure within clades was consistently observed. This interesting phylogenetic pattern may be a case of convergent evolution or paraphyletic sampling which highlights taxonomic issues of the group. Future studies need to include not only molecular data but information on morphology, ecology and behaviour along with the implementation of biogeographic programs that can test alternative hypotheses (such as dispersal and vicariance) directly. Also, the inclusion of the recently reported fossil from the subfamily Euclydesinae (Martins-Neto 2007) should allow for more accurate date estimates within the family. Taken as a whole the results presented in this thesis suggest that microevolutionary processes are sufficient to explain modern diversity without the need to invoke abiotic events. The three cases investigated here - marine inundation, asteroid impact and continental drift - all appear to have had only a limited effect on the diversity of taxa studied. To reach even stronger conclusions future studies should incorporate different data (for instance nuclear genes, intron position, and genome structure) and use biogeographic software capable of including ecological, morphological and habitat information.
|
44 |
Late Eocene through Oligocene calcareous nannofossils from the paleo-equatorial Pacific Ocean – taxonomy, preservation history, biochronology and evolutionBlaj, Teodora January 2009 (has links)
This study aims to unravel the ecological and evolutionary dynamics within the calcareous nannofossil communities at the Eocene/Oligocene (E/O) transition and during the Oligocene time when Cenozoic 'icehouse' conditions were established. The main question this study aims to answer is whether the changes in the nannofossil assemblages were controlled by intrinsic evolutionary trends or if the changes were controlled by environmental factors such as changes in temperature and nutrient availability in the surface water. These questions are addressed with detailed analyses of the taxonomy, biostratigraphy and fluctuations in abundance and diversity of calcareous nannofossil assemblages from a continuous latest Eocene through Oligocene sediment section from the ODP Site 1218 (8°53.38´N, 135°22.00´W), paleo-equatorial Pacific Ocean. An improved nannofossil taxonomy and biostratigraphy has been established. At the E/O transition, changes in the nannofossil preservation mimics changes in calcium carbonate content. A detailed investigation of late Eocene and Oligocene sediments yields age estimates for ten nannofossil bioevents. Morphometric studies of the Reticulofenestra umbilicus-R. hillae show that these cannot be subdivided into two different morphospecies. Based on different morphometry and stratigraphic ranges, the Oligocene Sphenolithus lineage appears to be the result of a combined anagenetic and cladogenetic evolution. A new nannolith species is described: Triquetrorhabdulus longus. High-resolution nannofossil data indicate changes in the composition, abundance and diversity of the mid-Oligocene assemblages. Intervals of high diversity index coincide with Oi-glaciation events. However, visual examination of the variations in abundance of nannofossil taxa do not appear to correlate with changes in either oxygen or carbon isotopes. This presumably indicates that a dynamic equilibrium did not exist between these Oligocene nannoplankton assemblages and changes in surface water temperature or productivity conditions. / Doctoral Thesis in Marine Geoscience at Stockholm University, Sweden 2009
|
45 |
Depositional systems and tectonic/eustatic history of the Oligocene Vicksburg episode of the northern Gulf CoastColeman, Janet Marie Combes, 1952- 10 July 2013 (has links)
Regional depositional systems analyses combining surface and subsurface geological and geophysical data provide the framework for a sequence stratigraphic study of the Lower Oligocene Vicksburg Formation of the Gulf Coastal Plain. The results describe the eustatic history of the Vicksburg stratigraphic unit. The two primary Texas depocenters, the Houston embayment and the Rio Grande embayment, were separated by a deep-rooted structural nose: the San Marcos arch. A barrier / strandplain intervened between the Louisiana deltaic depocenter and the Houston embayment. Within the embayments, deltaic complexes merged along strike with barrier / strandplains. Contemporaneous growth faulting controlled deltaic depositional patterns in the Rio Grande embayment and, to a lesser degree, in the Houston embayment. Smaller wave-dominated delta complexes interspersed with barrier / strandplains extended across the San Marcos arch. Updip of the paralic depocenters, fluvial systems traversed coastal plain units. Seaward of the paralic systems, sand and mud deposits prograded across and built up over the relict Jackson shelf and shelf margin. The contact between the Vicksburg Formation and the underlying Jackson Group marks the position of the Eocene - Oligocene boundary within the Gulf Coastal Plain section. On regional dip-oriented well-log cross sections there is a distinct, abrupt, seaward shift in the paralic facies at the Jackson - Vicksburg boundary; this contact corresponds to an Exxon-model Type 1 unconformity. The unconformity is related to the development of an Antarctic ice sheet in the earliest Oligocene. During middle Vicksburg time, a minor transgression (genetic stratigraphic sequence boundary) flooded the coastal plain. Overlying the progradational Vicksburg Formation, the lower Frio Formation accumulated in an aggradational mode; this switch of depositional modes corresponds to an Exxon-model Type 2 sequence boundary. Construction of genetic stratigraphic sequence diagrams and comparison to Exxon's coastal onlap curves across different areas of the Oligocene coast show that the effects of local depocenters (sediment influx) may mask eustatic effects. Only truly regional events, such as the middle Vicksburg transgression and the basal Vicksburg seaward shift in coastal position, correlate across the coastal plain and may result from a eustatic change. / text
|
46 |
Ein Datenbanksystem (P.A.S.T) zur Verarbeitung und Interpretation von palynologischen Daten aus dem Paläogen Mitteleuropas mit Diversitätsbetrachtungen / A data base system (P.A.S.T) for processing and interpreting palynological data from the Palaeogene of Central Europe - application to diversity studiesBode, Thomas 12 December 2001 (has links)
No description available.
|
47 |
Geology and geochemistry of hydrothermal alteration, eastern portion of the North Santiam mining areaPollock, J. Michael 01 January 1985 (has links)
The Ruth Mine is a base-metal vein deposit near the eastern margin of a reported porphyry copper deposit in the Western Cascade Range in Oregon. Uplift of the Western Cascade Range has resulted in a deeply dissected terrain in which more than a kilometer of the stratigraphy overlying the porphyry-style mineralization is preserved and exposed. The stratigraphic units, which are middle Tertiary in age, have been given arbitrary letter designations beginning with the lowest unit (Unit A) through the uppermost unit (Unit D).
|
48 |
Stratigraphy of the Ohanapecosh Formation north of Hamilton Buttes, southcentral WashingtonStine, Cynthia Marie 01 January 1987 (has links)
Over 1055 m of early Oligocene andesitic-dacitic volcaniclastic rocks and minor interbedded andesitic lava flows of the Ohanapecosh Formation are exposed in a dissected structural high in the southern Washington Cascade Range, about 22 km southwest of Packwood, Washington.
The exposed sequence of rocks in the study area are located approximately 250 m above the base of the Ohanapecosh Formation. A lower sequence of deposits, about 350 m in thickness, are dominated by primary and reworked lithic lapilli-tuff and epiclastic channelized volcanic sandstone and conglomerate. These sediments are interpreted as pyroclastic flows and stream deposits, respectively. The upper sequence, about 455 m thick is dominated by volcanic diamictites interpreted as lahars, with minor lithic lapilli-tuff and epiclastic volcanic sandstone.
|
49 |
New Specimens of Sparassodonta (Mammalia, Metatheria) from Chile and BoliviaEngelman, Russell K. January 2018 (has links)
No description available.
|
50 |
An Integrated Geophysical and Geologic Study of the Paleogene-Age Volcanic Body and Possible Landslide Deposit on the South Slope of the Traverse Mountains, UtahHoopes, John C. 08 December 2011 (has links) (PDF)
Development of homes, roads, and commercial buildings in northern Utah has grown significantly during the last several decades. Construction has expanded from the valley floor to higher elevations of benches, foothills, and other elevated regions of the Wasatch Mountain Front. Construction in the higher elevation areas are a concern due to potential for landslides, both new and reactivated. Landslides have been identified in this region and are dated as Pleistocene to historical in age. A possible landslide of about 0.5 km2 on the south slope of Traverse Mountain has been mapped by the Utah Geological Survey in 2005. Its surface exhibits hummocky topography and is comprised of Oligocene-age volcanic ash, block and ash flow tuffs, and andesite lava. Landslides along the Wasatch Mountain Front are complex features usually characterized by dense vegetation and poor outcrop and require a combination geological and geophysical methods to study their thickness, slope, lateral extent, and style of emplacement. Our study incorporates trenching, boreholes, and LiDAR aerial imagery. Unique to the study of landslides is our use of seismic reflection with a vibroseis source over the mapped landslide deposit. The seismic parameters of source, station spacing, and processing method provide a coherent, albeit low-resolution, image of the upper 500 m of the subsurface beneath the landslide. A major reflector boundary in our seismic profiles has an apparent dip of 4° to the south, approximately parallel with the surface topography. Its elevation and seismic character are indicative of a contact between the Oligocene-age volcanic rocks on top of a portion of the Pennsylvanian-age Bingham Mine Formation, a mixed carbonate and siliciclastic sequence. The reflector defines an asymmetric graben-like structure bounded by a north-northwest-trending normal fault system. Analysis of trenches, boreholes and local geology reveals a faulted, chaotic body of block and ash flow tuffs, surrounded by andesite lavas. Using LiDAR and surface geological reconnaissance, a possible toe or margin of a landslide has been interpreted in the north-west portion of the study area. The combination weakened block and ash flow tuffs and abundant clay production from this unit contribute to the likelihood of a coalescence of landslides in this mapped landslide area. The integration of LiDAR, trenching, boreholes and reflection seismology provides the range and resolution of data needed to assess the complex geology of landslides.
|
Page generated in 0.0358 seconds