• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bioinspired catalysis using oligourea helical foldamers / Catalyse biomimétique avec des foldamères à strucure hélicoïdale comportant des motifs oligo-(thio)urées

Bécart, Diane 03 November 2017 (has links)
Catalyse et repliement sont deux notions intimement liées dans la Nature à travers les protéines et les enzymes, puis par extension, avec les catalyseurs synthétiques conçus par les chimistes. Des briques élémentaires artificielles ont été développées depuis deux décennies afin de synthétiser de nouvelles architectures moléculaires ayant une forte propension à se replier, appelées foldamères. Dans de nombreux systèmes biomimétiques inspirés par les biopolymères, la stabilisation d’une forme repliée résulte de la formation d’un fort réseau de liaisons H. Ces squelettes repliés apportent plusieurs avantages pour une application en catalyse : ils peuvent offrir un effet coopératif lors de la coordination d’un ligand, une meilleure stabilisation des intermédiaires chargés ainsi qu’une minimisation du coût entropique de la formation de l’état de transition. Ils constituent une nouvelle classe d’organocatalyseurs méritant de plus amples investigations. L’organocatalyse présente un fort intérêt dans la recherche actuelle, dû la simplicité de mise en œuvre des systèmes et l’absence de métaux conduisant à une moindre toxicité. Cependant, des charges importantes (5-20 mol%) en catalyseur sont souvent nécessaires pour réaliser des transformations chimiques avec de bons rendements et de bonnes stéréosélectivités. L’effet synergique apporté par la structure bien définie des foldamères via leur fort réseau de liaisons hydrogène peut jouer en faveur d’une diminution de la charge catalytique du système.Les foldamères à base de motifs oligo(thio)urées sont des analogues des peptides, avec une structure secondaire hélicoïdale, 2.5 résidus par tour et un réseau de liaisons hydrogène fermant des pseudo-cycles à 12 et 14 atomes, et ils présentent un macrodipôle pouvant être renforcé par l’activation avec un groupe électroattracteur au niveau du pôle positif. La liaison d’anions avec des oligourées a été démontrée comme étant site-spécifique et n’ayant aucune influence sur la structure hélicoïdale, illustrant leur fort potentiel de liaison d’espèces chargés négativement. Les urées et les thiourées ont été largement utilisées comme donneurs de liaisons hydrogène pour l’organocatalyse avec des résultats très satisfaisants. Ces concepts posent les bases pour développer un organocatalyseur innovant avec des foldamères oligo(thio)urées, interagissant par activation des substrats par formation de liaisons H. Une étude autour de la relation structure-activité, accompagnée de l’élaboration d’une réaction modèle avec un large panel de substrats, ainsi que des études mécanistiques via des mesures RMN, vont permettre d’établir les principes gouvernant la catalyse avec des foldamères oligo(thio)urées. / Catalysis and folding are two closely interwoven notions in Nature particularly among enzymes, and by extension can be applied to synthetic catalysts designed by chemists. Artificial monomers have been created for two decades to synthesize new oligomeric molecular architectures with a high propensity to fold, which are called foldamers. In many systems, folded structure is stabilized by a strong hydrogen-bonding network, in a similar way to biopolymer structures. These folded backbones may provide significant advantages as catalyst as they could offer cooperativity in ligand binding, a greater stabilization of charged intermediates and then a minimization of entropic cost of the transition state binding. They constitute a class of potential organocatalysts which deserves more investigation. Organocatalysis is an area of strong interest nowadays because of the lower toxicity of the catalysts and meta free procedures, their modularity and easiness to handle them. But generally high loading (5-20 mol%) are needed to perform chemical transformations with good yields and good stereoselectivities. The synergistic effect brought by the well-defined structures of foldamers through the strong hydrogen-bonding network can be in favour of a decrease of the catalyst loading.Oligo(thio)urea foldamers are peptides analogues, with a helical secondary structure, 2.5 residues per turn and 12- and 14-membered H-bond ring and present a macrodipole which can be reinforced through activation with electro-withdrawing group at the positive pole. Binding of anions to oligourea has been studied and was shown to be site specific and not to have any impact on the helical structure thus illustrating the high potential of coordination of negatively charged species to oligourea foldamers. Urea and thiourea small molecules have been widely used as H-bond donors for organocatalysis with very satisfying results. These concepts are the basis of the development of an innovative organocatalyst with oligo(thio)urea foldamers, acting through H-bond activation. A structure-activity relationship study combining an extended substrate scope and NMR mechanistic studies was performed allowing delineation of the principles governing oligourea foldamer-based catalysis.
2

Conformational control in hydrogen-bonded oligourea helices

Wechsel, Romina January 2016 (has links)
Helical foldamers offer variety and flexibility in the design of molecular systems, with different types of backbone geometry and side chains available to influence both structure and function. Such foldamers based on an aliphatic N,N'-linked oligourea backbone have been studied in recent years and have been shown to form very stable hydrogen-bonded 2.5(12/14) helices. This project investigated the creation of hydrogen-bonded oligourea helices to explore concepts of conformational control. Both an achiral helical system with a single chiral influence and meso oligourea helices were synthesised and analysed. The formation of a helical conformation was achieved in an achiral oligourea helix consisting of gem-dimethyl residues using a single terminal chiral controller unit based on cis-1,2-diaminocyclohexane (Dac). A preferred screw-sense was established in some oligomers, and the structural importance of the gem-dimethyl side chains and the terminal substituents was demonstrated. Urea-linked meso homo-oligomers of Dac were found to adopt a stable helical conformation, and values for their barriers of screw-sense inversion could be calculated. Conformational control of meso oligourea helices was explored through two main approaches: (i) intrinsic screw-sense preference through symmetry-breaking and (ii) the use of ligands to either induce or invert screw-sense preference. The synthetic precursors of meso oligoureas are chiral as they possess two different terminal substituents, which breaks the meso symmetry. Amplifying the difference in hydrogen-bonding capabilities of terminal substituents allowed control over the screw-sense preference of such oligomers. Binding of a chiral carboxylate ligand (Boc-D-Pro) to a meso oligourea led to a bias in screw-sense equilibrium; the binding affinity and a 1:1 ligand-foldamer complex stoichiometry were established. Finally, selective binding of achiral anions (AcO-, H2PO4-) to one terminus was used to achieve inversion of screw-sense preference of chiral oligourea helices. This research represents the first investigation of meso oligomers and uses conformational control through symmetry and symmetry-breaking as a novel concept.
3

Inhibition d'interactions protéine-protéine par des foldamères mixtes oligoamide/olugourée / Protein-protein interactions inhibition by mixed oligoamide/oligourea foldamers

Cussol, Léonie 18 December 2018 (has links)
Les interactions protéine–protéine (IPP) jouent un rôle primordial dans les processus physiologiques. L’inhibition de ces interactions ouvre la voie à la conception de nouvelles molécules à visée thérapeutique. Les structures secondaires en hélice α sont fréquemment impliquées dans les interactions entre protéines auxquelles elles peuvent contribuer de manière significative. La conception de molécules, mimant ce motif de reconnaissance et pouvant interagir avec la protéine cible tout en inhibant la reconnaissance avec le partenaire naturel, représente une voie innovante pour trouver de nouveaux candidats médicaments. Les oligomères d’urée aliphatique, une classe de foldamères qui adoptent une structure secondaire en hélice bien définie et proche de l’hélice α, ont été proposés comme mimes d’hélice α pour inhiber les IPP. Au cours de cette thèse, nous nous sommes d’abord intéressés à la conception de foldamères d’oligourée et de chimères oligoamide/oligourée pour cibler des surfaces de protéine. Nous avons sélectionné le récepteur nucléaire de la vitamine D (VDR) comme modèle d’étude en raison de son intérêt thérapeutique, et des connaissances structurales disponibles. Les protéines partenaires de VDR (coactivateurs) interagissant via une courte région structurée en hélice α, nos recherches ont portés sur des mimes d’hélices inspirés des séquences de coactivateurs. Dans une seconde partie, nous nous sommes intéressés à la génération et à l’étude de dimères covalents de foldamères, qui pourraient être utilisés pour couvrir des surfaces d’interaction plus larges. En effet, les interactions protéine-protéine montrent souvent un mode d’interaction plus complexe qu’une simple hélice, faisant intervenir des structures tertiaires et quaternaires de type coiled coils, qui peuvent aussi servir de point de départ pour la conception de nouvelles classes d’inhibiteurs. / Protein-protein interactions (PPI) have a key role in physiological processes. The inhibition of these PPI may lead to new therapeutic strategies. Secondary structures in α-helix are frequently involved in protein interactions where they may contribute significantly to binding. Designing molecules which mimic the helical motif for protein surface recognition and inhibition of the natural partner represents an innovative path to discover new drug candidates. Aliphatic urea oligomers, a class of foldamers that adopt a well-defined H-bonded helical secondary structure with good similarity to the α-helix have been proposed as possible α-helix mimics to inhibit protein-protein interactions. The first part of this PhD project was dedicated to the design and synthesis of oligoureas and oligourea/α-peptide chimeras for specific protein surface recognition. We have selected the vitamin D receptor as a potential target, mainly because (i) it is therapeutically relevant; (ii) its protein partner (coactivators) interact through a short region which adopts an α-helical structure upon binding and (iii) structures at atomic resolution were available to enable the design of effective mimetics. In the second part, we investigated methods to generate foldamer covalent dimers that could potentially be used to cover larger interaction surfaces. The rationale is that the binding interface is often more complex than a single helix and may involve tertiary and quaternary structures such as coiled coils which in turns may also serve as a basis for the design of new classes of inhibitors.
4

Agents antimicrobiens innovants de type foldamère pour le contrôle de l'infection par des pathogènes du risque biologique : application à Bacillus anthracis / Innovative antimicrobial agents based on foldamers for the control of infection by pathogens of the biological risk : application to Bacillus anthracis

Antunes, Stéphanie 16 December 2015 (has links)
Face à l’émergence de pathogènes multi-résistants aux antibiotiques classiques, et au développement des armes biologiques, la découverte de nouveaux agents antimicrobiens reste un enjeu majeur de santé public. Dans ce contexte, la conception d’oligomères peptidomimétiques, capables de mimer le caractère amphiphile et la structure en hélice des peptides antimicrobiens naturels, effecteurs clés de l’immunité innée, offre d’intéressantes perspectives. Il a été établi que des foldamères à base d’urées amphipathiques, structurés en hélice-2,5, possédaient une forte activité bactéricide contre Bacillus anthracis, bactérie considérée comme une arme biologique potentielle. En vue d’optimiser l’activité anthracidale et la sélectivité in vitro de la première génération de composés, une étude relation structure-activité a été initiée en réalisant une série de modifications (i.e. séquence primaire, longueur et squelette de l’oligourée). Des oligomères originaux possédant des motifs isostères de type thiourée et guanidine ont ainsi été préparés en solution puis sur support solide. Des études conformationnelles approfondies soulignèrent que seule l’insertion de lien thiourée à proximité du dipôle négatif était bien tolérée par l’hélice-2,5. Parallèlement, les études in vivo ont montré une forte stabilité des oligourées avec une accumulation sélective dans le rein ainsi qu’une protection partielle des souris contre l’infection systémique par Bacillus anthracis. Enfin l’étude de l’interaction de ces oligourées avec des membranes lipidiques modèles a confirmé leur capacité à perturber les membranes et a mis en avant des mécanismes d’action différents selon le type de lipides utilisés. / The increasing antibiotic resistance among pathogens and the emergence of biological weapons have highlighted the urgent need of new antimicrobial agents. In this context, the design of peptidomimetics as urea-based foldamers, capable of mimicking the amphiphilic character and conformation of natural antimicrobial peptides, key effector molecules of innate immunity, offers new prospects. It has been previously established that amphipathic oligourea 2.5-helices have a strong bactericidal activity against Bacillus anthracis, bacteria considered as a potential biological warfare agent. Based on these results and with the aim of optimizing the potency and selectivity in vitro of the first generation of compounds, a structure-activity relationship study was carried out by performing series of modifications on a lead compound (i.e. side-chain replacement, size and backbone modifications). Among them, new series oligomers incorporating isosteric substitutions such as thiourea and guanidine moieties were prepared in solution then on solid support. Interestingly, the conformational studies revealed that only the insertion of thiourea linkage near the negative end of the helix dipole was well-tolerated by the 2.5-helix. Concurrently, in vivo studies highlighted a strong stability of the lead oligourea with a selective accumulation in the kidneys as well as a partial protection of the mice after systemic infection by Bacillus anthracis. Finally, biophysical interaction studies of selected oligoureas with model membranes confirmed their capacity to disturb membranes and showed different mechanisms of action depending on the lipid composition.
5

Protein Surface Recognition with Urea-based foldamers : application to the design of ligands targeting histone chaperone proteins / Reconnaissance de surfaces de protéines avec des foldamères à base d’urées : application au design de ligands ciblant une protéine chaperon d’histone

Mbianda, Johanne 08 October 2018 (has links)
Avec 8,8 millions de décès dénombrés en 2015, le cancer est l’une des plus grandes causes de mortalité dans le monde. De nouvelles stratégies thérapeutiques ont émergé et l’identification de nouvelles cibles biologiques comme notamment la protéine Asf1, un chaperon d’histone H3-H4 surexprimée dans les cellules cancéreuses et en particulier le cancer du sein. Cette protéine possède différentes fonctions dans la cellule et agit à plusieurs endroits par des interactions protéine-protéines. Au cours de cette thèse de doctorat, nous avons développé une stratégie originale de design d’inhibiteurs d’interactions protéine-protéine avec des foldamères peptidomimes à base d’urées. Ces foldamères ont 1) la capacité de se replier en hélice 2,5, rappelant les hélices α des peptides et 2) d’être hautement tolérés et initiateurs d’hélicité lorsqu’ils sont conjugués à des fragments peptidiques. Nous avons développé des oligomères mixtes comprenant une alternance de segment(s) peptidique(s) et multi-urée, appelées chimères, ayant l’avantage de combiner la reconnaissance naturelle de peptides et la forte propension des oligourées à former des hélices stables. Après une étude structurale montrant qu’avec l’insertion d’un court segment à base d’urées dans un peptide hydrosoluble adoptant une conformation en hélice  la conformation hélicoïdale pour une majorité des chimères est conservée, des composés mimant la partie hélicoïdale C-terminale de l’histone H3 ont été élaborés. Une interaction de l’ordre du micromolaire avec Asf1 a été observée en solution puis validée à l’état solide par cristallographie aux rayons X. En vue d’optimiser la reconnaissance de ces chimères avec la surface d’Asf1 et leur sélectivité, un panel de modifications a été réalisée (i.e. séquence primaire, longueur du segment urée). Nous avons ainsi conçu des chimères α/urée possédant des affinités de liaison pour Asf1 comprises entre le nano- et micromolaire. Le composé le plus prometteur a été internalisé avec succès dans des cellules cancéreuses après conjugaison bioreductible avec un peptide vecteur et pourrait conduire à la mort cellulaire de la lignée tumorale étudiée. / In 2015, 8.8 million of death were due to cancer making it an important cause of death in the world. The necessity to develop new anticancer treatments led to the search and discovery of new biological targets, such as Asf1, a histone chaperone protein of H3-H4 which is overexpressed in cancer cells, in particular in breast cancer. This protein plays a role in different biological processes in cells through protein-protein interactions (PPIs). During this thesis, we developed an original strategy to design inhibitors of PPIs with urea-based peptidomimetics. These foldamers are able to fold into stable 2.5-helix reminiscent to the natural α-helix. Designed urea-based foldamers have been synthesized as hybrid oligomers consisting of α-peptide and oligourea segments. With a combination of the two backbones, these compounds named “chimeras” presents advantages of both species with the natural recognition of α-peptides and the innate helical stability of oligourea. First, a model study was performed to evaluate the impact of the introduction of short urea segments into a long water-soluble peptide. Circular dichroism experiments confirmed that the helical conformation was conserved. New series of compounds that mimic a helical part of H3 were synthesized and their interaction with Asf1 was studied in solution and in solid state using a range of biophysical methods. Several modifications into the sequence were performed (side chain substitution, size of the urea segment or compound) in order to improve the recognition of Asf1 surface as well as their selectivity. We conceived oligourea-peptide chimeras with affinity for Asf1 in the micromolar range. Our best compound linked to a cell penetrating peptide was shown to enter into cells and to induce cell death.

Page generated in 0.0441 seconds