61 |
Mécanismes physiologiques sous-jacents à la plasticité de la thermotolérance chez la drosophile invasive Drosophila suzukii / Underlying physiological mechanisms of thermal tolerance plasticity in the invasive fly Drosophila suzukiiEnriquez, Thomas 17 May 2019 (has links)
Drosophila suzukii est une drosophile invasive en Europe, Amérique du Nord et Amérique du Sud. Contrairement aux autres espèces de drosophiles, les femelles parasitent les fruits mûrs que les larves consomment, engendrant d’importants dégâts sur les cultures fruitières. Les stratégies mises en place par cette espèce pour tolérer les températures hivernales sous nos latitudes sont encore peu comprises. Par conséquent, l’objectif de ma thèse était d’acquérir des connaissances fondamentales sur la thermotolérance de cette espèce, en m’intéressant notamment à la plasticité de la tolérance au froid et aux mécanismes physiologiques sous-jacents à l’acclimatation. J’ai évalué la thermotolérance basale de D. suzukii en soumettant des adultes et des pupes à un large panel de températures (froides et chaudes). Ces expérimentations ont permis de confirmer que cette espèce était intolérante au froid et que des températures supérieures à 32°C impactaient grandement sa survie. Par la suite, j’ai évalué la plasticité de sa tolérance au froid. Mes travaux ont permis de confirmer que sa thermotolérance était effectivement plastique, puisque l’utilisation de températures fluctuantes ou l’acclimatation permettaient de réduire sa mortalité lors d’expositions aux basses températures. L’acclimatation chez D. suzukii était corrélée à de nombreuses modifications physiologiques, telles que l’accumulation de cryoprotecteurs, un réajustement de la composition des phospholipides membranaires et des réserves lipidiques, une régulation des gènes liés à l’activité des transporteurs ioniques ainsi qu’un maintien de l’homéostasie métabolique. Ces modifications, également observées chez d’autres espèces d’insectes, pourraient être liées à l’augmentation de la tolérance au froid de D. suzukii, jouant probablement un rôle important dans sa survie hivernale et donc dans le succès de son invasion. Ces connaissances acquises sur sa thermobiologie contribueront sans doute à mieux cerner les limites physiologiques de cette espèce et prédire l’évolution de son invasion, ainsi que sa phénologie et les variations de populations au cours des saisons dans les zones déjà envahies. Mes résultats ouvrent également des perspectives intéressantes pour la mise en place de techniques de lutte intégrée contre D. suzukii. / Drosophila suzukii is an invasive pest in Europe, North and South America. Unlike other drosophilids, females oviposit in ripe fruits that larvae consume, provoking important damages on fruit productions. The overwintering strategies of this fly are yet poorly understood. Therefore, the aim of my thesis was to acquire new fundamental knowledge about the thermal biology of this fly, and more specifically the plasticity of its thermal tolerance and the physiological mechanisms underpinning cold acclimation. In order to define its basal thermal tolerance, adults and pupae were subjected to a large set of high and low temperatures. My data confirmed that this pest was chill susceptible, and showed that survival was greatly compromised during exposures above 32°C. Next, I evaluated its thermal tolerance plasticity. My data confirmed the high plasticity of its cold tolerance, as fluctuating thermal regimes and acclimation were able to decrease the mortality due to cold exposures. Acclimation in this species was correlate with several physiological adjustments, such as: cryoprotectant accumulation, remodeling of membrane phospholipids and lipidic reserves, upregulation of genes linked with activity of ionic transporters and maintenance of metabolic homeostasis. Those modifications (which are shared among temperate insect species) are likely linked with cold tolerance increase provoked by acclimation. Therefore, these physiological adjustments could play an important role in its overwintering success in Europe and Canada, which can facilitate its invasion in these regions. These new data will participate to a better understanding of its physiological limits, and are thus of importance for predicting the evolution of its invasion front and its phenology and demographic variations in invaded areas. My results are also of interest regarding the set-up of integrated pest management strategies against this fly.
|
62 |
Mass Spectrometry-Based Metabolomics and Protein Native Structure Characterization to Improve Intervention in Salmonellosis and Proteomics-based Biomarker Characterization in Invasive AspergillosisWu, Jikang, Dr. January 2018 (has links)
No description available.
|
63 |
The Systems Medicine of Cannabinoids in Pediatrics: The Case for More Pediatric StudiesO'Dell, Chloe P., Tuell, Dawn S., Shah, Darshan S., Stone, William L. 11 January 2022 (has links)
INTRODUCTION: The legal and illicit use of cannabinoid-containing products is accelerating worldwide and is accompanied by increasing abuse problems. Due to legal issues, the USA will be entering a period of rapidly expanding recreational use of cannabinoids without the benefit of needed basic or clinical research. Most clinical cannabinoid research is focused on adults. However, the pediatric population is particularly vulnerable since the central nervous system is still undergoing developmental changes and is potentially susceptible to cannabinoid-induced alterations. RESEARCH DESIGN AND METHODS: This review focuses on the systems medicine of cannabinoids with emphasis on the need for future studies to include pediatric populations and mother-infant dyads. RESULTS AND CONCLUSION: Systems medicine integrates omics-derived data with traditional clinical medicine with the long-term goal of optimizing individualized patient care and providing proactive medical advice. Omics refers to large-scale data sets primarily derived from genomics, epigenomics, proteomics, and metabolomics.
|
64 |
AI for Omics and Imaging Models in Precision Medicine and ToxicologyBussola, Nicole 01 July 2022 (has links)
This thesis develops an Artificial Intelligence (AI) approach intended for accurate patient stratification and precise diagnostics/prognostics in clinical and preclinical applications. The rapid advance in high throughput technologies and bioinformatics tools is still far from linking precisely the genome-phenotype interactions with the biological mechanisms that underlie pathophysiological conditions. In practice, the incomplete knowledge on individual heterogeneity in complex diseases keeps forcing clinicians to settle for surrogate endpoints and therapies based on a generic one-size-fits-all approach. The working hypothesis is that AI can add new tools to elaborate and integrate together in new features or structures the rich information now available from high-throughput omics and bioimaging data, and that such re- structured information can be applied through predictive models for the precision medicine paradigm, thus favoring the creation of safer tailored treatments for specific patient subgroups. The computational techniques in this thesis are based on the combination of dimensionality reduction methods with Deep Learning (DL) architectures to learn meaningful transformations between the input and the predictive endpoint space. The rationale is that such transformations can introduce intermediate spaces offering more succinct representations, where data from different sources are summarized. The research goal was attacked at increasing levels of complexity, starting from single input modalities (omics and bioimaging of different types and scales), to their multimodal integration. The approach also deals with the key challenges for machine learning (ML) on biomedical data, i.e. reproducibility, stability, and interpretability of the models. Along this path, the thesis contribution is thus the development of a set of specialized AI models and a core framework of three tools of general applicability: i. A Data Analysis Plan (DAP) for model selection and evaluation of classifiers on omics and imaging data to avoid selection bias. ii. The histolab Python package that standardizes the reproducible pre-processing of Whole Slide Images (WSIs), supported by automated testing and easily integrable in DL pipelines for Digital Pathology. iii. Unsupervised and dimensionality reduction techniques based on the UMAP and TDA frameworks for patient subtyping. The framework has been successfully applied on public as well as original data in precision oncology and predictive toxicology. In the clinical setting, this thesis has developed1: 1. (DAPPER) A deep learning framework for evaluation of predictive models in Digital Pathology that controls for selection bias through properly designed data partitioning schemes. 2. (RADLER) A unified deep learning framework that combines radiomics fea- tures and imaging on PET-CT images for prognostic biomarker development in head and neck squamous cell carcinoma. The mixed deep learning/radiomics approach is more accurate than using only one feature type. 3. An ML framework for automated quantification tumor infiltrating lymphocytes (TILs) in onco-immunology, validated on original pathology Neuroblastoma data of the Bambino Gesu’ Children’s Hospital, with high agreement with trained pathologists. The network-based INF pipeline, which applies machine learning models over the combination of multiple omics layers, also providing compact biomarker signatures. INF was validated on three TCGA oncogenomic datasets. In the preclinical setting the framework has been applied for: 1. Deep and machine learning algorithms to predict DILI status from gene expression (GE) data derived from cancer cell lines on the CMap Drug Safety dataset. 2. (ML4TOX) Deep Learning and Support Vector Machine models to predict potential endocrine disruption of environmental chemicals on the CERAPP dataset. 3. (PathologAI) A deep learning pipeline combining generative and convolutional models for preclinical digital pathology. Developed as an internal project within the FDA/NCTR AIRForce initiative and applied to predict necrosis on images from the TG-GATEs project, PathologAI aims to improve accuracy and reduce labor in the identification of lesions in predictive toxicology. Furthermore, GE microarray data were integrated with histology features in a unified multi-modal scheme combining imaging and omics data. The solutions were developed in collaboration with domain experts and considered promising for application.
|
65 |
<b>Systems Modeling of host microbiome interactions in Inflammatory Bowel Diseases</b>Javier E Munoz (18431688) 24 April 2024 (has links)
<p dir="ltr">Crohn’s disease and ulcerative colitis are chronic inflammatory bowel diseases (IBD) with a rising global prevalence, influenced by clinical and demographics factors. The pathogenesis of IBD involves complex interactions between gut microbiome dysbiosis, epithelial cell barrier disruption, and immune hyperactivity, which are poorly understood. This necessitates the development of novel approaches to integrate and model multiple clinical and molecular data modalities from patients, animal models, and <i>in-vitro</i> systems to discover effective biomarkers for disease progression and drug response. As sequencing technologies advance, the amount of molecular and compositional data from paired measurements of host and microbiome systems is exploding. While it is become routine to generate such rich, deep datasets, tools for their interpretation lag behind. Here, I present a computational framework for integrative modeling of microbiome multi-omics data titled: Latent Interacting Variable Effects (LIVE) modeling. LIVE combines various types of microbiome multi-omics data using single-omic latent variables (LV) into a structured meta-model to determine the most predictive combinations of multi-omics features predicting an outcome, patient group, or phenotype. I implemented and tested LIVE using publicly available metagenomic and metabolomics data set from Crohn’s Disease (CD) and ulcerative colitis (UC) status patients in the PRISM and LLDeep cohorts. The findings show that LIVE reduced the number of features interactions from the original datasets for CD to tractable numbers and facilitated prioritization of biological associations between microbes, metabolites, enzymes, clinical variables, and a disease status outcome. LIVE modeling makes a distinct and complementary contribution to the current methods to integrate microbiome data to predict IBD status because of its flexibility to adapt to different types of microbiome multi-omics data, scalability for large and small cohort studies via reliance on latent variables and dimensionality reduction, and the intuitive interpretability of the meta-model integrating -omic data types.</p><p dir="ltr">A novel application of LIVE modeling framework was associated with sex-based differences in UC. Men are 20% more likely to develop this condition and 60% more likely to progress to colitis-associated cancer compared to women. A possible explanation for this observation is differences in estrogen signaling among men and women in which estrogen signaling may be protective against UC. Extracting causal insights into how gut microbes and metabolites regulate host estrogen receptor β (ERβ) signaling can facilitate the study of the gut microbiome’s effects on ERβ’s protective role against UC. Supervised LIVE models<b> </b>ERβ signaling using high-dimensional gut microbiome data by controlling clinical covariates such as: sex and disease status. LIVE models predicted an inhibitory effect on ER-UP and ER-DOWN signaling activities by pairs of gut microbiome features, generating a novel of catalog of metabolites, microbial species and their interactions, capable of modulating ER. Two strongly positively correlated gut microbiome features: <i>Ruminoccocus gnavus</i><i> </i>with acesulfame and <i>Eubacterium rectale</i><i> </i>with 4-Methylcatechol were prioritized as suppressors ER-UP and ER-DOWN signaling activities. An <i>in-vitro</i> experimental validation roadmap is proposed to study the synergistic relationships between metabolites and microbiota suppressors of ERβ signaling in the context of UC. Two i<i>n-vitro</i> systems, HT-29 female colon cancer cell and female epithelial gut organoids are described to evaluate the effect of gut microbiome on ERβ signaling. A detailed experimentation is described per each system including the selection of doses, treatments, metrics, potential interpretations and limitations. This experimental roadmap attempts to compare experimental conditions to study the inhibitory effects of gut microbiome on ERβ signaling and how it could elevate or reduce the risk of developing UC. The intuitive interpretability of the meta-model integrating -omic data types in conjunction with the presented experimental validation roadmap aim to transform an artificial intelligence-generated big data hypothesis into testable experimental predictions.</p>
|
66 |
Modulation de l'apport qualitatif post-natal en lipides sur le fonctionnement cérébral du nouveau-néAidoud, Nacima 16 March 2018 (has links)
La qualité des lipides des préparations pour nourrissons est primordiale, notamment en termes d’acides gras polyinsaturés (AGPI) comme l’acide arachidonique (ARA) et docosahexaénoïque (DHA). Ces derniers pourraient favoriser le développement neurosensoriel de l’enfant. Nous avons ainsi évalué 4 standards commerciaux contenant des lipides végétaux ou laitiers et supplémentés ou non en ARA/DHA, sur le développement neurosensoriel au travers d’un modèle d’allaitement artificiel « pups in the cups ». En TEP-cs, nous observons que la supplémentation en ARA/DHA permet de normaliser le fonctionnement cérébral.L’exploration des lipides tissulaires indique des différences en DHA particulièrement bas avec l’allaitement en lipides végétaux purs. Nous proposons un algorithme de prédiction du DHA cérébrale et oculaire via les profils en acides gras érythrocytaires. Dans ces tissus un tiers des espèces à DHA sont affectées et corrélées à l’activité cérébrale. Les neuromédiateurs issus de l’AL, ARA, DHA par la voie LOX sont impactés ainsi que la distribution spatiale en DHA en IMS. Les autres données omiques soulignaient l’impact des interactions fond lipidique x ajout DHA/ARA (transcriptomique) ou fond lipidique (métabolomique) sur la régulation du métabolisme cérébral impactant le métabolisme neuronal et le métabolisme cérébral du microbiote probablement via l’axe de signalisation intestin-cerveau. Nous identifions alors un métagénome sensible à l’ajout DHA/ARA corrélé à la fonction cérébrale. Enfin, des modifications épigénétiques (méthylation du génome et miARN) touchant le groupe FC suggèrent potentiellement un impact à long terme. / The quality of lipids in infant formula is essential, especially in terms of polyunsaturated fatty acids (PUFAs) such as arachidonic acid (ARA) and docosahexaenoic acid (DHA). These could promote the neurosensory development of the child. We thus evaluated 4 commercial standards containing plant or dairy lipids and supplemented or not with ARA / DHA, on the neurosensory development through an artificially feeding model "pups in the cups". In PET-cs, we observe that the supplementation in ARA / DHA makes it possible to normalize the cerebral functioning. The exploration of tissue lipids indicates differences in DHA which are particularly low with pure plant lipids intake. We propose an algorithm for predicting cerebral and ocular DHA via erythrocyte fatty acids profiles. In these tissues one-third of the DHA species are affected and correlated with brain activity. The neuromediators resulting from AL, ARA, DHA by the LOX pathway are impacted as well as the spatial distribution of DHA in IMS imaging. Other omics data underlined the impact of lipid background x combination DHA / ARA (transcriptomics) or lipid background (metabolomics) on the regulation of cerebral metabolism impacting neuronal metabolism and brain metabolism of the microbiota probably through the signalling of gut-brain axis. We then identify a metagenome sensitive to the addition of DHA / ARA correlated to brain function. Finally, epigenetic modifications (methylation of the genome and miRNA) affecting the FC group potentially suggest a long-term impact.
|
67 |
Model-Based Hypothesis Testing in Biomedicine : How Systems Biology Can Drive the Growth of Scientific KnowledgeJohansson, Rikard January 2017 (has links)
The utilization of mathematical tools within biology and medicine has traditionally been less widespread compared to other hard sciences, such as physics and chemistry. However, an increased need for tools such as data processing, bioinformatics, statistics, and mathematical modeling, have emerged due to advancements during the last decades. These advancements are partly due to the development of high-throughput experimental procedures and techniques, which produce ever increasing amounts of data. For all aspects of biology and medicine, these data reveal a high level of inter-connectivity between components, which operate on many levels of control, and with multiple feedbacks both between and within each level of control. However, the availability of these large-scale data is not synonymous to a detailed mechanistic understanding of the underlying system. Rather, a mechanistic understanding is gained first when we construct a hypothesis, and test its predictions experimentally. Identifying interesting predictions that are quantitative in nature, generally requires mathematical modeling. This, in turn, requires that the studied system can be formulated into a mathematical model, such as a series of ordinary differential equations, where different hypotheses can be expressed as precise mathematical expressions that influence the output of the model. Within specific sub-domains of biology, the utilization of mathematical models have had a long tradition, such as the modeling done on electrophysiology by Hodgkin and Huxley in the 1950s. However, it is only in recent years, with the arrival of the field known as systems biology that mathematical modeling has become more commonplace. The somewhat slow adaptation of mathematical modeling in biology is partly due to historical differences in training and terminology, as well as in a lack of awareness of showcases illustrating how modeling can make a difference, or even be required, for a correct analysis of the experimental data. In this work, I provide such showcases by demonstrating the universality and applicability of mathematical modeling and hypothesis testing in three disparate biological systems. In Paper II, we demonstrate how mathematical modeling is necessary for the correct interpretation and analysis of dominant negative inhibition data in insulin signaling in primary human adipocytes. In Paper III, we use modeling to determine transport rates across the nuclear membrane in yeast cells, and we show how this technique is superior to traditional curve-fitting methods. We also demonstrate the issue of population heterogeneity and the need to account for individual differences between cells and the population at large. In Paper IV, we use mathematical modeling to reject three hypotheses concerning the phenomenon of facilitation in pyramidal nerve cells in rats and mice. We also show how one surviving hypothesis can explain all data and adequately describe independent validation data. Finally, in Paper I, we develop a method for model selection and discrimination using parametric bootstrapping and the combination of several different empirical distributions of traditional statistical tests. We show how the empirical log-likelihood ratio test is the best combination of two tests and how this can be used, not only for model selection, but also for model discrimination. In conclusion, mathematical modeling is a valuable tool for analyzing data and testing biological hypotheses, regardless of the underlying biological system. Further development of modeling methods and applications are therefore important since these will in all likelihood play a crucial role in all future aspects of biology and medicine, especially in dealing with the burden of increasing amounts of data that is made available with new experimental techniques. / Användandet av matematiska verktyg har inom biologi och medicin traditionellt sett varit mindre utbredd jämfört med andra ämnen inom naturvetenskapen, såsom fysik och kemi. Ett ökat behov av verktyg som databehandling, bioinformatik, statistik och matematisk modellering har trätt fram tack vare framsteg under de senaste decennierna. Dessa framsteg är delvis ett resultat av utvecklingen av storskaliga datainsamlingstekniker. Inom alla områden av biologi och medicin så har dessa data avslöjat en hög nivå av interkonnektivitet mellan komponenter, verksamma på många kontrollnivåer och med flera återkopplingar både mellan och inom varje nivå av kontroll. Tillgång till storskaliga data är emellertid inte synonymt med en detaljerad mekanistisk förståelse för det underliggande systemet. Snarare uppnås en mekanisk förståelse först när vi bygger en hypotes vars prediktioner vi kan testa experimentellt. Att identifiera intressanta prediktioner som är av kvantitativ natur, kräver generellt sett matematisk modellering. Detta kräver i sin tur att det studerade systemet kan formuleras till en matematisk modell, såsom en serie ordinära differentialekvationer, där olika hypoteser kan uttryckas som precisa matematiska uttryck som påverkar modellens output. Inom vissa delområden av biologin har utnyttjandet av matematiska modeller haft en lång tradition, såsom den modellering gjord inom elektrofysiologi av Hodgkin och Huxley på 1950‑talet. Det är emellertid just på senare år, med ankomsten av fältet systembiologi, som matematisk modellering har blivit ett vanligt inslag. Den något långsamma adapteringen av matematisk modellering inom biologi är bl.a. grundad i historiska skillnader i träning och terminologi, samt brist på medvetenhet om exempel som illustrerar hur modellering kan göra skillnad och faktiskt ofta är ett krav för en korrekt analys av experimentella data. I detta arbete tillhandahåller jag sådana exempel och demonstrerar den matematiska modelleringens och hypotestestningens allmängiltighet och tillämpbarhet i tre olika biologiska system. I Arbete II visar vi hur matematisk modellering är nödvändig för en korrekt tolkning och analys av dominant-negativ-inhiberingsdata vid insulinsignalering i primära humana adipocyter. I Arbete III använder vi modellering för att bestämma transporthastigheter över cellkärnmembranet i jästceller, och vi visar hur denna teknik är överlägsen traditionella kurvpassningsmetoder. Vi demonstrerar också frågan om populationsheterogenitet och behovet av att ta hänsyn till individuella skillnader mellan celler och befolkningen som helhet. I Arbete IV använder vi matematisk modellering för att förkasta tre hypoteser om hur fenomenet facilitering uppstår i pyramidala nervceller hos råttor och möss. Vi visar också hur en överlevande hypotes kan beskriva all data, inklusive oberoende valideringsdata. Slutligen utvecklar vi i Arbete I en metod för modellselektion och modelldiskriminering med hjälp av parametrisk ”bootstrapping” samt kombinationen av olika empiriska fördelningar av traditionella statistiska tester. Vi visar hur det empiriska ”log-likelihood-ratio-testet” är den bästa kombinationen av två tester och hur testet är applicerbart, inte bara för modellselektion, utan också för modelldiskriminering. Sammanfattningsvis är matematisk modellering ett värdefullt verktyg för att analysera data och testa biologiska hypoteser, oavsett underliggande biologiskt system. Vidare utveckling av modelleringsmetoder och tillämpningar är därför viktigt eftersom dessa sannolikt kommer att spela en avgörande roll i framtiden för biologi och medicin, särskilt när det gäller att hantera belastningen från ökande datamängder som blir tillgänglig med nya experimentella tekniker.
|
68 |
Réponse du grain de blé à la nutrition azotée et soufrée : étude intégrative des mécanismes moléculaires mis en jeu au cours du développement du grain par des analyses -omiques / Wheat grain response to nitrogen and sulfur supply : integrative study of molecular mechanisms involved during the grain development using -omics analysesBonnot, Titouan 09 December 2016 (has links)
L’augmentation des rendements est un enjeu majeur chez les céréales. Dans cet objectif, il est nécessaire de maintenir la qualité du grain de blé, qui est principalement déterminée par sa teneur et sa composition en protéines de réserve. En effet, une forte relation négative existe entre le rendement et la teneur en protéines. Par ailleurs, la qualité du grain est fortement influencée par la disponibilité en azote et en soufre dans le sol. La limitation des apports d’intrants azotés à la culture et la carence en soufre récemment observée dans les sols représentent ainsi des difficultés supplémentaires pour maitriser cette qualité. Une meilleure connaissance des mécanismes moléculaires impliqués dans le contrôle du développement du grain et la mise en place de ses réserves protéiques en réponse à la nutrition azotée et soufrée est donc primordiale. L’objectif de cette thèse a ainsi été d’apporter de nouveaux éléments à la compréhension de ces processus de régulation, aujourd’hui peu connus. Pour cela, les approches -omiques sont apparues comme une stratégie de choix pour identifier les acteurs moléculaires mis en jeu. Le protéome nucléaire a été une cible importante dans les travaux menés. L’étude de ces protéines nucléaires a révélé certains régulateurs transcriptionnels qui pourraient être impliqués dans le contrôle de la mise en place des réserves du grain. Dans une approche combinant des données de protéomique, transcriptomique et métabolomique, une vision intégrative de la réponse du grain à la nutrition azotée et soufrée a été obtenue. L’importance d’un apport de soufre dans le contrôle de la balance azote/soufre du grain, déterminante pour la composition du grain en protéines de réserve, a été clairement vérifiée. Parmi les changements observés au niveau du métabolisme cellulaire, certains des gènes affectés par la modification de cette balance pourraient orchestrer l’ajustement de la composition du grain face à des situations de carences nutritionnelles. Ces nouvelles connaissances devraient permettre de mieux maitriser la qualité du grain de blé dans un contexte d’agriculture durable. / Improving the yield potential of cereals represents a major challenge. In this context, wheat grain quality has to be maintained. Indeed, grain quality is mainly determined by the content and the composition of storage proteins, but there is a strongly negative correlation between yield and grain protein concentration. In addition, grain quality is strongly influenced by the availability of nitrogen and sulfur in soils. Nowadays, the limitation of nitrogen inputs, and also the sulfur deficiency recently observed in soils represent major difficulties to control the quality. Therefore, understanding of molecular mechanisms controlling grain development and accumulation of storage proteins in response to nitrogen and sulfur supply is a major issue. The objective of this thesis was to create knowledge on the comprehension of these regulatory mechanisms. For this purpose, the best strategy to identify molecular actors involved in these processes consisted of -omics approaches. In our studies, the nuclear proteome was an important target. Among these proteins, we revealed some transcriptional regulators likely to be involved in the control of the accumulation of grain storage compounds. Using an approach combining proteomic, transcriptomic and metabolomic data, the characterization of the integrative grain response to the nitrogen and sulfur supply was obtained. Besides, our studies clearly confirmed the major influence of sulfur in the control of the nitrogen/sulfur balance that determines the grain storage protein composition. Among the changes observed in the cell metabolism, some genes were disturbed by the modification of this balance. Thus these genes could coordinate the adjustment of grain composition in response to nutritional deficiencies. These new results contribute in facing the challenge of maintaining wheat grain quality with sustainable agriculture.
|
69 |
Approche intégrative du développement musculaire afin de décrire le processus de maturation en lien avec la survie néonatale / Integrative approach of muscular development to describe the maturation process related to the neonatal survivalVoillet, Valentin 29 September 2016 (has links)
Depuis plusieurs années, des projets d'intégration de données omiques se sont développés, notamment avec objectif de participer à la description fine de caractères complexes d'intérêt socio-économique. Dans ce contexte, l'objectif de cette thèse est de combiner différentes données omiques hétérogènes afin de mieux décrire et comprendre le dernier tiers de gestation chez le porc, période influençant la mortinatalité porcine. Durant cette thèse, nous avons identifié les bases moléculaires et cellulaires sous-jacentes de la fin de gestation, en particulier au niveau du muscle squelettique. Ce tissu est en effet déterminant à la naissance car impliqué dans l'efficacité de plusieurs fonctions physiologiques comme la thermorégulation et la capacité à se déplacer. Au niveau du plan expérimental, les tissus analysés proviennent de foetus prélevés à 90 et 110 jours de gestation (naissance à 114 jours), issus de deux lignées extrêmes pour la mortalité à la naissance, Large White et Meishan, et des deux croisements réciproques. Au travers l'application de plusieurs études statistiques et computationnelles (analyses multidimensionnelles, inférence de réseaux, clustering et intégration de données), nous avons montré l'existence de mécanismes biologiques régulant la maturité musculaire chez les porcelets, mais également chez d'autres espèces d'intérêt agronomique (bovin et mouton). Quelques gènes et protéines ont été identifiées comme étant fortement liées à la mise en place du métabolisme énergétique musculaire durant le dernier tiers de gestation. Les porcelets ayant une immaturité du métabolisme musculaire seraient sujets à un plus fort risque de mortalité à la naissance. Un second volet de cette thèse concerne l'imputation de données manquantes (tout un groupe de variables pour un individu) dans les méthodes d'analyses multidimensionnelles, comme l'analyse factorielle multiple (AFM) (ou multiple factor analysis (MFA)). Dans notre contexte, l'AFM fut particulièrement intéressante pour l'intégration de données d'un ensemble d'individus sur différents tissus (deux ou plus). Afin de conserver ces individus manquants pour tout un groupe de variables, nous avons développé une méthode, appelée MI-MFA (multiple imputation - MFA), permettant l'estimation des composantes de l'AFM pour ces individus manquants. / Over the last decades, some omics data integration studies have been developed to participate in the detailed description of complex traits with socio-economic interests. In this context, the aim of the thesis is to combine different heterogeneous omics data to better describe and understand the last third of gestation in pigs, period influencing the piglet mortality at birth. In the thesis, we better defined the molecular and cellular basis underlying the end of gestation, with a focus on the skeletal muscle. This tissue is specially involved in the efficiency of several physiological functions, such as thermoregulation and motor functions. According to the experimental design, tissues were collected at two days of gestation (90 or 110 days of gestation) from four fetal genotypes. These genotypes consisted in two extreme breeds for mortality at birth (Meishan and Large White) and two reciprocal crosses. Through statistical and computational analyses (descriptive analyses, network inference, clustering and biological data integration), we highlighted some biological mechanisms regulating the maturation process in pigs, but also in other livestock species (cattle and sheep). Some genes and proteins were identified as being highly involved in the muscle energy metabolism. Piglets with a muscular metabolism immaturity would be associated with a higher risk of mortality at birth. A second aspect of the thesis was the imputation of missing individual row values in the multidimensional statistical method framework, such as the multiple factor analysis (MFA). In our context, MFA was particularly interesting in integrating data coming from the same individuals on different tissues (two or more). To avoid missing individual row values, we developed a method, called MI-MFA (multiple imputation - MFA), allowing the estimation of the MFA components for these missing individuals.
|
70 |
Inférence des réseaux de régulation de la synthèse des protéines de réserve du grain de blé tendre (Triticum aestivum L.) en réponse à l'approvisionnement en azote et en soufre / Inference and analysis of regulatory networks involved in wheat (Triticum aestivum L.) grain storage protein synthesis and their response to nitrogen and sulfur supplyVincent, Jonathan 10 September 2014 (has links)
La teneur et la composition en protéines de réserve du grain de blé tendre (Triticum aestivum L.) sont les principaux déterminants de sa valeur d’usage et de sa qualité nutritionnelle. La composition en protéines de réserve du grain est déterminée par la teneur en assimilâts azotés et soufrés par grain via des lois d’échelle qui pourraient être les propriétés émergentes de réseaux de régulation. Plusieurs facteurs de transcription intervenant dans cette régulation ont été mis en évidence, mais les voies et mécanismes impliqués sont encore très peu connus. Le constat est identique en ce qui concerne l’impact de la nutrition azotée et soufrée sur ce réseau de régulation. Le développement des outils de génomique fonctionnelle et de bioinformatique permet aujourd’hui d’aborder ces régulations de manière globale via une approche systémique mettant en relation plusieurs niveaux de régulation. L’objectif du travail présenté est d’explorer les réseaux de régulation –omiques impliqués dans le contrôle de l’accumulation des protéines de réserve dans le grain de blé tendre et leur réponse à l’approvisionnement en azote et en soufre. Une approche d’inférence de réseaux basée sur la découverte de règles a été étendue, implémentée sous la forme d’une plateforme web. L’utilisation de cette plateforme a permis de définir des sémantiques multiples afin d’inférer dans un cadre global, des règles possédant différentes significations biologiques. Des facteurs de transcription spécifiques de certains organes et certaines phases de développement ont été mis en évidence et un intérêt particulier a été apporté à leur position dans les réseaux de règles inférés, notamment en relation avec les protéines de réserve. Les travaux initiés dans cette thèse ouvrent un champ d’investigation innovant pour l’identification de nouvelles cibles de sélection variétale pour l’amélioration de la valeur technologique et de la qualité nutritionnelle du blé. Ils devraient ainsi permettre de mieux maîtriser la composition en protéines de réserve et ainsi produire des blés adaptés à des utilisations ciblées ou carencé en certaines fractions protéiques impliquées dans des phénomènes d’allergénicité et d’intolérance du gluten, ce dans un contexte d’agriculture durable et plus économe en intrants. / Grain storage protein content and composition are the main determinants of bread wheat (Triticum aestivum L.) end-use value. Scaling laws governing grain protein composition according to grain nitrogen and sulfur content could be the outcome of a finely tuned regulation network. Although it was demonstrated that the main regulation of grain storage proteins accumulation occurs at the transcriptomic level in cereals, knowledge of the underlying molecular mechanisms is elusive. Moreover, the effects of nitrogen and sulfur on these mechanisms are unknown. The issue of skyrocketing data generation in research projects is addressed by developing high-throughput bioinformatics approaches. Extracting knowledge on from such massive amounts of data is therefore an important challenge. The work presented herein aims at elucidating regulatory networks involved in grain storage protein synthesis and their response to nitrogen and sulfur supply using a rule discovery approach. This approach was extended, implemented in the form of a web-oriented platform dedicated to the inference and analysis of regulatory networks from qualitative and quantitative –omics data. This platform allowed us to define different semantics in a comprehensive framework; each semantic having its own biological meaning, thus providing us with global informative networks. Spatiotemporal specificity of transcription factors expression was observed and particular attention was paid to their relationship with grain storage proteins in the inferred networks. The work initiated here opens up a field of innovative investigation to identify new targets for plant breeding and for an improved end-use value and nutritional quality of wheat in the context of inputs limitation. Further analyses should enhance the understanding of the control of grain protein composition and allow providing wheat adapted to specific uses or deficient in protein fractions responsible for gluten allergenicity and intolerance.
|
Page generated in 0.0393 seconds