Spelling suggestions: "subject:"falsifications"" "subject:"falsification""
1 |
The Tension Between Falsificationism and Realism: a Critical Examination of a Problem in the Philosophy of Karl PopperEarly, Darren T. 08 July 1999 (has links)
Karl Popper's philosophy of science includes both falsificationism and realism. I explore the relationship between these two positions in his philosophy and find a strong tension between them. Drawing upon this tension in Popper's philosophy, I explore the general relationship between falsificationism and realism in an effort to determine whether or not the two positions can be successfully combined. Rather than criticizing falsificationism, I focus instead on the realist side of the tension and seek to resolve the tension through the introduction of an alternative form of scientific realism. I examine three alternatives in detail: Hilary Putnam's internal realism, Richard Boyd's realism, and Ian Hacking's entity realism. Internal realism is shown to be an unsatisfactory solution because of its failure to incorporate a notion of approximate truth. Boyd's version of realism is also shown to be unsatisfactory due to its ascription of absolute approximate truth to scientific theories. Hacking's entity realism, while consistent with falsificationism in many respects, is also shown to be problematic due to its apparent reliance upon induction. Finally, I propose a solution to the problem, which consists in the elaboration of an alternative version of scientific realism based primarily on a reinterpretation of Hacking's entity realism that stresses non-inferential knowledge of causes. I also argue that the reinterpreted form of Hacking's realism can be used to support Boyd's notion of a theoretical tradition, although one of entities and their causal properties rather than one of approximately true theories. / Master of Arts
|
2 |
Popper e o convencionalismo /Oliveira, Amélia de Jesus. January 2005 (has links)
Orientador: Jézio Hernani Bomfim Gutierre / Banca: José Carlos Pinto de Oliveira / Banca: Maria Eunice Quilici Gonzalez / Resumo: Este trabalho resulta de uma reflexão acerca do convencionalismo na filosofia da ciência de Karl Popper. O mote central é dado pela tentativa de se compreender a crítica de Popper ao convencionalismo clássico e uma concomitante defesa popperiana do emprego de convenções na ciência. Primeiramente, ocupamo-nos da crítica ao convencionalismo. Com o fim de detectar os elementos que teriam levado Popper a rejeitar essa visão de ciência, procedemos a um exame da corrente convencionalista clássica, aqui circunscrita às obras de Henri Poincaré e Pierre Duhem, em suas contribuições à filosofia da ciência. Nesse exame, encontramos evidências que ensejam o questionamento da imagem de convencionalismo fornecida por Popper. A seguir, detivemo-nos na filosofia da ciência popperiana, comumente denominada falsificacionismo, cuja análise revela o importante papel nela desempenhado por certo convencionalismo. A contraposição das duas visões de ciência, falsificacionismo e convencionalismo, mostra que a visão popperiana da corrente convencionalista merece questionamentos e permite a afirmação de que o convencionalismo está muito menos distante do falsificacionismo do que Popper faz supor. Por fim, sugerimos que a análise do convencionalismo clássico não só se mostrou uma fonte para o tratamento de questões centrais da filosofia da ciência como também de abordagens esclarecedoras para a explicitação do método científico defendido por Popper. / Abstract: Our research is related to the discussion of conventionalism within Karl Popper's philosophy of science. Our central aim is that of understanding Popper's critique of classical conventionalism as well as his acceptance of conventions in science. In the first part of the dissertation, the Popperian attack against conventionalism is discussed. Trying to detect the elements that ground Popper's rejection of that approach, we proceed to an evaluation of the classical conventionalist proposal, here restricted to Henri Poincaré's and Pierre Duhem's contributions to the philosophy of science. In such an inquiry, we find evidences that threaten the Popperian image of conventionalism. In the sequence, we focus upon the specifically Popperian philosophy of science, usually labeled "falsificationism", and reveal the relevant role that conventionalism assumes within that philosophy of science. The resultant parallel between those different visions of science, falsificationism/conventionalism, paves the way to the conclusion that the Popperian interpretation of conventionalism is at least questionable and provides evidence to the impression that conventionalism is much closer to falsificationism than Popper would be ready to admit. Finally we maintain that the analysis of classical conventionalism, more than just a valuable tool for the treatment of central questions of the philosophy of science, provide crucial elements for the understanding of Popper's methodology of science. / Mestre
|
3 |
Popper e o convencionalismoOliveira, Amélia de Jesus [UNESP] 25 November 2005 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:25:28Z (GMT). No. of bitstreams: 0
Previous issue date: 2005-11-25Bitstream added on 2014-06-13T18:26:33Z : No. of bitstreams: 1
oliveira_aj_me_mar.pdf: 435083 bytes, checksum: b729abeb0905ed27f69b0465ed91d60a (MD5) / Este trabalho resulta de uma reflexão acerca do convencionalismo na filosofia da ciência de Karl Popper. O mote central é dado pela tentativa de se compreender a crítica de Popper ao convencionalismo clássico e uma concomitante defesa popperiana do emprego de convenções na ciência. Primeiramente, ocupamo-nos da crítica ao convencionalismo. Com o fim de detectar os elementos que teriam levado Popper a rejeitar essa visão de ciência, procedemos a um exame da corrente convencionalista clássica, aqui circunscrita às obras de Henri Poincaré e Pierre Duhem, em suas contribuições à filosofia da ciência. Nesse exame, encontramos evidências que ensejam o questionamento da imagem de convencionalismo fornecida por Popper. A seguir, detivemo-nos na filosofia da ciência popperiana, comumente denominada falsificacionismo, cuja análise revela o importante papel nela desempenhado por certo convencionalismo. A contraposição das duas visões de ciência, falsificacionismo e convencionalismo, mostra que a visão popperiana da corrente convencionalista merece questionamentos e permite a afirmação de que o convencionalismo está muito menos distante do falsificacionismo do que Popper faz supor. Por fim, sugerimos que a análise do convencionalismo clássico não só se mostrou uma fonte para o tratamento de questões centrais da filosofia da ciência como também de abordagens esclarecedoras para a explicitação do método científico defendido por Popper. / Our research is related to the discussion of conventionalism within Karl Popper's philosophy of science. Our central aim is that of understanding Popper's critique of classical conventionalism as well as his acceptance of conventions in science. In the first part of the dissertation, the Popperian attack against conventionalism is discussed. Trying to detect the elements that ground Popper's rejection of that approach, we proceed to an evaluation of the classical conventionalist proposal, here restricted to Henri Poincaré's and Pierre Duhem's contributions to the philosophy of science. In such an inquiry, we find evidences that threaten the Popperian image of conventionalism. In the sequence, we focus upon the specifically Popperian philosophy of science, usually labeled falsificationism, and reveal the relevant role that conventionalism assumes within that philosophy of science. The resultant parallel between those different visions of science, falsificationism/conventionalism, paves the way to the conclusion that the Popperian interpretation of conventionalism is at least questionable and provides evidence to the impression that conventionalism is much closer to falsificationism than Popper would be ready to admit. Finally we maintain that the analysis of classical conventionalism, more than just a valuable tool for the treatment of central questions of the philosophy of science, provide crucial elements for the understanding of Popper's methodology of science.
|
4 |
Epistemological Negativism and Scientific Knowledge.Khan, Galib A. 07 1900 (has links)
<p>Toward the end of the nineteenth century, Ernst Mach expressed his worries about obscurities and metaphysical elements in scientific knowledge, and consequently
contributed to the development of a Viennese tradition. Later on, Vienna Circle further extended Mach's ideas and led to the development of the logical positivist movement.
Among the main tenets of this movement is the view that scientific theories are to be reduced to an empirical base capable of conclusive verification. But scientific theories
are usually based on unverified and occasionally unverifiable hypotheses and principles. Thus, once this is realized, positivism in spite of itself will contribute to
the development of scepticism about scientific knowledge.</p>
<p>In reaction to the verificationism, however, Karl Popper developed his thesis of falsificationism or fallibilism; but this principle also leads to scepticism at least about certainty claims, with far reaching consequences. This chain of events leads to the development of Paul Feyerabend's epistemological anarchisma a rejection
of all rules and methods in science in an attempt to reduce science to the level of irrationality and mythology.</p>
<p>Against the negativist conclusions of these positions about science, the integrity of scientific knowledge is defended in this thesis. It is shown how scientific knowledge can be defended against scepticism of the type to which verificationism tends: this is done by examining one recent and rigorous sceptical position which undermines not only certainty and rationality of knowledge claims, but the very possibility of knowledge. By examining Popper's fallibilism, it is shown that science can also be defended against the negativist conclusions of fallibilism. Similarly, it is shown that
Feyerabend's epistemological anarchism cannot either undermine scientific knowledge.</p>
<p>These negativist positions, though they have received strong criticisms in some quarters, yet have not been examined all together, from the standpoint of their impact on the integrity of scientific knowledge. This task is undertaken in this thesis; we thus arrive at a positive and correct evaluation of scientific knowledge in the context of contemporary negativist epistemological trends. It has been shown that in spite of all the negativist arguments of the above positions, we can obtain certainty, justification, and truth in science, and thus we can obtain knowledge. But my rejection of negativism in science does not entail, and should not be construed as an advocacy of a return to, positivism.</p> / Thesis / Doctor of Philosophy (PhD)
|
5 |
Pluralidade de mundos do conhecimento em Karl PopperBettin, Rogério 01 September 2014 (has links)
Made available in DSpace on 2016-04-27T17:27:08Z (GMT). No. of bitstreams: 1
Rogerio Bettin.pdf: 901827 bytes, checksum: a7d6c66d907176975e5b667d88dcdc29 (MD5)
Previous issue date: 2014-09-01 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This paper aims at analyzing the plurality of realities of worlds of knowledge in
Karl Popper.
In the first section, we have chosen to analyze the object studied respecting
the chronological order of the Popperian publications, bearing in mind the verification
of the development of the three worlds thesis in Popper.
The author rejects both monistic and dualistic positions and hence proposes a
notion of a tripartite reality, claiming that reality is made up by the interaction among
three worlds: World 1, of physical objects and material states; World 2, of states of
consciousness or mental states or, maybe, of behavioral willingness to act, the world
of subjective knowledge; and World 3, of objective autonomous knowledge, which
doesn't depend on the subject who knows.
World 3 is inhabited by problems, critical arguments and theories, as a result
of the evolution of human language. It contains the history of our ideas, of how we
invent and react to such products of our own elaboration of objective contents of
thinking.
In the second section, aiming at better understanding the three worlds theory,
even though it is metaphysical, we present a connection between this thesis and the
Popperian epistemology, known as critical rationalism.
For the author, scientific knowledge is fallible, correctable and provisional, thus
making criticism assume a crucial role in the development of knowledge. Therefore,
as we analyse the thesis of the three worlds inserted in Popperian epistemology, we
can better understand some aspects of the theory of the three worlds, as well as how
knowledge grows, according to the presuppositions defended by Karl Popper / Esta pesquisa tem o objetivo de analisar a pluralidade de realidades de
mundos do conhecimento em Karl Popper.
Na primeira seção, optamos por analisar o objeto aqui estudado respeitando a
ordem cronológica das publicações popperianas, tendo em vista a verificação do
desenvolvimento da tese dos três mundos em Popper.
O autor não aceita as posições monistas e dualistas, por isso que ele propõe
uma noção de realidade tripartite, ao afirmar que a realidade é composta pela
interação de três mundos: mundo um, dos objetos físicos ou de estados materiais;
mundo dois, de estados de consciência ou de estados mentais, ou, talvez, de
disposições comportamentais para agir é o mundo do conhecimento subjetivo; e,
mundo três, do conhecimento objetivo e autônomo que independe do sujeito que
conhece.
Este é habitado pelos problemas, argumentos críticos e teorias, como
resultado da evolução da linguagem humana. O mundo três é a história de nossas
ideias, de como a inventamos e reagimos diante desses produtos de nossas próprias
elaborações de conteúdos objetivos de pensamento.
Na segunda seção, com o intuito de melhor compreendermos a tese dos três
mundos, mesmo sendo uma teoria metafísica, apresentaremos uma conexão desta
tese em relação a epistemologia popperiana - o racionalismo crítico.
Para o autor, todo conhecimento científico é falível, corrigível e provisório,
tendo a crítica papel fundamental para o desenvolvimento do conhecimento.
Portanto, ao analisarmos a o estatuto da tese dos três mundos inserida na
epistemologia popperiana, nos será permitido compreender melhor alguns aspectos
da teoria dos três mundos, assim como de que forma ocorre o crescimento do
conhecimento, segundo os pressupostos defendidos por Karl Popper
|
6 |
科学哲学から見た「知的設計」説伊勢田, 哲治, Iseda, Tetsuji 11 1900 (has links)
No description available.
|
7 |
Reexamining the Problem of Demarcating Science and Pseudoscience / Re-examining the Problem of Demarcating Science and PseudoscienceWestre, Evan 01 May 2014 (has links)
The demarcation problem aims to articulate the boundary between science and pseudoscience. Solutions to the problem have been notably raised by the logical positivists (verificationism), Karl Popper (falsificationism), and Imre Lakatos (methodology of research programmes). Due, largely, to the conclusions drawn by Larry Laudan, in a pivotal 1981 paper which dismissed the problem of demarcation as a “pseudo-problem”, the issue was brushed aside for years. Recently, however, there has been a revival of attempts to reexamine the demarcation problem and synthesize new solutions. My aim is to survey two of the contemporary attempts and to assess these approaches over and against the broader historical trajectory of the demarcation problem. These are the efforts of Nicholas Maxwell (aim-oriented empiricism), and Paul Hoyningen-Huene (systematicity). I suggest that the main virtue of the new attempts is that they promote a self-reflexive character within the sciences. A modern demarcation criterion should be sensitive towards the dynamic character of the sciences. Using, as an example, a case study of Traditional Chinese Medicine, I also suggest that the potential for conflict between demarcation conclusions and the empirical success of a pseudoscientific discipline is problematic. I question whether it is sensible to reject, as pseudoscientific, a discipline which seems to display empirical success in cases where the rival paradigm, contemporary western medicine, is not successful. Ultimately, I argue that there are both good theoretical and good pragmatic grounds to support further investigation into a demarcation criterion and that Laudan’s dismissal of the problem was premature. / Graduate / 0422 / 0402
|
8 |
Reexamining the Problem of Demarcating Science and Pseudoscience / Re-examining the Problem of Demarcating Science and PseudoscienceWestre, Evan 01 May 2014 (has links)
The demarcation problem aims to articulate the boundary between science and pseudoscience. Solutions to the problem have been notably raised by the logical positivists (verificationism), Karl Popper (falsificationism), and Imre Lakatos (methodology of research programmes). Due, largely, to the conclusions drawn by Larry Laudan, in a pivotal 1981 paper which dismissed the problem of demarcation as a “pseudo-problem”, the issue was brushed aside for years. Recently, however, there has been a revival of attempts to reexamine the demarcation problem and synthesize new solutions. My aim is to survey two of the contemporary attempts and to assess these approaches over and against the broader historical trajectory of the demarcation problem. These are the efforts of Nicholas Maxwell (aim-oriented empiricism), and Paul Hoyningen-Huene (systematicity). I suggest that the main virtue of the new attempts is that they promote a self-reflexive character within the sciences. A modern demarcation criterion should be sensitive towards the dynamic character of the sciences. Using, as an example, a case study of Traditional Chinese Medicine, I also suggest that the potential for conflict between demarcation conclusions and the empirical success of a pseudoscientific discipline is problematic. I question whether it is sensible to reject, as pseudoscientific, a discipline which seems to display empirical success in cases where the rival paradigm, contemporary western medicine, is not successful. Ultimately, I argue that there are both good theoretical and good pragmatic grounds to support further investigation into a demarcation criterion and that Laudan’s dismissal of the problem was premature. / Graduate / 0422 / 0402
|
9 |
Model-Based Hypothesis Testing in Biomedicine : How Systems Biology Can Drive the Growth of Scientific KnowledgeJohansson, Rikard January 2017 (has links)
The utilization of mathematical tools within biology and medicine has traditionally been less widespread compared to other hard sciences, such as physics and chemistry. However, an increased need for tools such as data processing, bioinformatics, statistics, and mathematical modeling, have emerged due to advancements during the last decades. These advancements are partly due to the development of high-throughput experimental procedures and techniques, which produce ever increasing amounts of data. For all aspects of biology and medicine, these data reveal a high level of inter-connectivity between components, which operate on many levels of control, and with multiple feedbacks both between and within each level of control. However, the availability of these large-scale data is not synonymous to a detailed mechanistic understanding of the underlying system. Rather, a mechanistic understanding is gained first when we construct a hypothesis, and test its predictions experimentally. Identifying interesting predictions that are quantitative in nature, generally requires mathematical modeling. This, in turn, requires that the studied system can be formulated into a mathematical model, such as a series of ordinary differential equations, where different hypotheses can be expressed as precise mathematical expressions that influence the output of the model. Within specific sub-domains of biology, the utilization of mathematical models have had a long tradition, such as the modeling done on electrophysiology by Hodgkin and Huxley in the 1950s. However, it is only in recent years, with the arrival of the field known as systems biology that mathematical modeling has become more commonplace. The somewhat slow adaptation of mathematical modeling in biology is partly due to historical differences in training and terminology, as well as in a lack of awareness of showcases illustrating how modeling can make a difference, or even be required, for a correct analysis of the experimental data. In this work, I provide such showcases by demonstrating the universality and applicability of mathematical modeling and hypothesis testing in three disparate biological systems. In Paper II, we demonstrate how mathematical modeling is necessary for the correct interpretation and analysis of dominant negative inhibition data in insulin signaling in primary human adipocytes. In Paper III, we use modeling to determine transport rates across the nuclear membrane in yeast cells, and we show how this technique is superior to traditional curve-fitting methods. We also demonstrate the issue of population heterogeneity and the need to account for individual differences between cells and the population at large. In Paper IV, we use mathematical modeling to reject three hypotheses concerning the phenomenon of facilitation in pyramidal nerve cells in rats and mice. We also show how one surviving hypothesis can explain all data and adequately describe independent validation data. Finally, in Paper I, we develop a method for model selection and discrimination using parametric bootstrapping and the combination of several different empirical distributions of traditional statistical tests. We show how the empirical log-likelihood ratio test is the best combination of two tests and how this can be used, not only for model selection, but also for model discrimination. In conclusion, mathematical modeling is a valuable tool for analyzing data and testing biological hypotheses, regardless of the underlying biological system. Further development of modeling methods and applications are therefore important since these will in all likelihood play a crucial role in all future aspects of biology and medicine, especially in dealing with the burden of increasing amounts of data that is made available with new experimental techniques. / Användandet av matematiska verktyg har inom biologi och medicin traditionellt sett varit mindre utbredd jämfört med andra ämnen inom naturvetenskapen, såsom fysik och kemi. Ett ökat behov av verktyg som databehandling, bioinformatik, statistik och matematisk modellering har trätt fram tack vare framsteg under de senaste decennierna. Dessa framsteg är delvis ett resultat av utvecklingen av storskaliga datainsamlingstekniker. Inom alla områden av biologi och medicin så har dessa data avslöjat en hög nivå av interkonnektivitet mellan komponenter, verksamma på många kontrollnivåer och med flera återkopplingar både mellan och inom varje nivå av kontroll. Tillgång till storskaliga data är emellertid inte synonymt med en detaljerad mekanistisk förståelse för det underliggande systemet. Snarare uppnås en mekanisk förståelse först när vi bygger en hypotes vars prediktioner vi kan testa experimentellt. Att identifiera intressanta prediktioner som är av kvantitativ natur, kräver generellt sett matematisk modellering. Detta kräver i sin tur att det studerade systemet kan formuleras till en matematisk modell, såsom en serie ordinära differentialekvationer, där olika hypoteser kan uttryckas som precisa matematiska uttryck som påverkar modellens output. Inom vissa delområden av biologin har utnyttjandet av matematiska modeller haft en lång tradition, såsom den modellering gjord inom elektrofysiologi av Hodgkin och Huxley på 1950‑talet. Det är emellertid just på senare år, med ankomsten av fältet systembiologi, som matematisk modellering har blivit ett vanligt inslag. Den något långsamma adapteringen av matematisk modellering inom biologi är bl.a. grundad i historiska skillnader i träning och terminologi, samt brist på medvetenhet om exempel som illustrerar hur modellering kan göra skillnad och faktiskt ofta är ett krav för en korrekt analys av experimentella data. I detta arbete tillhandahåller jag sådana exempel och demonstrerar den matematiska modelleringens och hypotestestningens allmängiltighet och tillämpbarhet i tre olika biologiska system. I Arbete II visar vi hur matematisk modellering är nödvändig för en korrekt tolkning och analys av dominant-negativ-inhiberingsdata vid insulinsignalering i primära humana adipocyter. I Arbete III använder vi modellering för att bestämma transporthastigheter över cellkärnmembranet i jästceller, och vi visar hur denna teknik är överlägsen traditionella kurvpassningsmetoder. Vi demonstrerar också frågan om populationsheterogenitet och behovet av att ta hänsyn till individuella skillnader mellan celler och befolkningen som helhet. I Arbete IV använder vi matematisk modellering för att förkasta tre hypoteser om hur fenomenet facilitering uppstår i pyramidala nervceller hos råttor och möss. Vi visar också hur en överlevande hypotes kan beskriva all data, inklusive oberoende valideringsdata. Slutligen utvecklar vi i Arbete I en metod för modellselektion och modelldiskriminering med hjälp av parametrisk ”bootstrapping” samt kombinationen av olika empiriska fördelningar av traditionella statistiska tester. Vi visar hur det empiriska ”log-likelihood-ratio-testet” är den bästa kombinationen av två tester och hur testet är applicerbart, inte bara för modellselektion, utan också för modelldiskriminering. Sammanfattningsvis är matematisk modellering ett värdefullt verktyg för att analysera data och testa biologiska hypoteser, oavsett underliggande biologiskt system. Vidare utveckling av modelleringsmetoder och tillämpningar är därför viktigt eftersom dessa sannolikt kommer att spela en avgörande roll i framtiden för biologi och medicin, särskilt när det gäller att hantera belastningen från ökande datamängder som blir tillgänglig med nya experimentella tekniker.
|
10 |
Concepts of the 'Scientific Revolution': An analysis of the historiographical appraisal of the traditional claims of the scienceOnyekachi Nnaji, John 12 June 2013 (has links)
´Scientific revolution´, as a concept, is both ´philosophically general´ and ´historically unique´. Both dual-sense of the term alludes to the occurrence of great changes in science. The former defines the changes in science as a continual process while the latter designate them, particularly, as the ´upheaval´ which took place during the early modern period. This research aims to demonstrate how the historicists´ critique of the justification of the traditional claims of science on the basis of the scientific processes and norms of the 16th and 17th centuries, illustrates the historical/local determinacy of the science claims. It argues that their identification of the contextual and historical character of scientific processes warrants a reconsideration of our notion of the universality of science. It affirms that the universality of science has to be sought in the role of such sources like scientific instruments, practical training and the acquisition of methodological routines / "Revolución científica", como concepto, se refiere a la vez a algo «filosóficamente general» e « históricamente único". Ambos sentidos del término aluden a la ocurrencia de grandes cambios en la ciencia. El primero define los cambios en la ciencia como un proceso continuo, mientras que el último los designa, en particular, como la "transformación", que tuvo lugar durante la Edad Moderna. Esta investigación tiene como objetivo demostrar cómo la crítica de los historicistas a la justificación de las características tradicionales de la ciencia sobre la base de los procesos y normas científicos de los siglos XVI y XVII, ilustra la determinación histórica y local de los atributos de la ciencia. Se argumenta que la identificación del carácter contextual e histórico de los procesos científicos justifica una reconsideración de nuestra noción de la universalidad de la ciencia. Se afirma que la universalidad de la ciencia se ha de buscar en el papel de tales fuentes como instrumentos científicos, la formación práctica y la adquisición de rutinas metodológicas
|
Page generated in 0.0827 seconds