• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10047
  • 3816
  • 1789
  • 1243
  • 1168
  • 1167
  • 283
  • 221
  • 199
  • 140
  • 128
  • 123
  • 111
  • 106
  • 103
  • Tagged with
  • 24014
  • 4192
  • 3049
  • 2896
  • 2220
  • 2058
  • 1996
  • 1821
  • 1679
  • 1420
  • 1250
  • 1238
  • 1233
  • 1175
  • 1155
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
611

Application of e-TDR to achieve precise time synchronization and controlled asynchronization of remotely located signals

Sripada, Aparna 14 January 2014 (has links)
Time Domain Reflectometer (TDR) measures the electrical length of a cable from the applied end to the location of an impedance change. An impedance change causes a portion of the applied signal to reflect back based on the value of its reflection coefficient. The time of flight (TOF) between the applied and reflected wave is computed and multiplied with previously determined signal propagation velocity to determine the location of the impedance change. We intentionally open terminate the output end of the cable which makes the reflection coefficient be maximum (=1) to measure its electrical length. Conventional TDRs designed for testing integrity of long cables use various closed pulse shaped test signals i.e. the half sine wave and the Gaussian pulse, that disperse (change shape) and change velocity while propagation along the cable. Quoting Dr. Leon Brillouin’s comments on electromagnetic energy propagation [10], “in a vacuum, all waves (e.g. frequencies) propagate at the same velocity, hence withoutdistortion, whereas in a dispersive lossy media, except for an infinitely long sinusoidal waveform, distortion will occur due to frequency dependent velocity.” This signal distortion generally degrades the accuracy of the measurement of the signal’s TOF. We discuss here an Enhanced Resolution Time Domain Reflectometer (e-TDR). The enhanced resolution is due to a newly discovered signal called SPEEDY DELIVERY (SD) by Dr. Robert Flake at The University of Texas at Austin (US PATENT 6,441,695 B1 issued in August 27, 2002). This SD signal has a propagation velocity that is a programmable constant and this signal preserves its shape during propagation through dispersive lossy media (DLM). This signal behavior allows us to use ‘e-TDR’ in applications where remotely located signals need to be synchronized or asynchronized precisely. Potential applications include signal based synchronization of devices like sensors connected in a network. Since the cable carrying data from sensors at discrete and remote locations to a collecting center have different electrical lengths, it is necessary to precisely offset the timestamp of the incoming signal from these sensors to allow accurate data fusion. Our prototype is capable of synchronizing signals 1,200 ft (~ 400 m) apart with sub-nanosecond resolution. / text
612

Statistical inference for some discrete-valued time series

Wang, Chao, 王超 January 2012 (has links)
Some problems of' statistical inference for discrete-valued time series are investigated in this study. New statistical theories and methods are developed which may aid us in gaining more insight into the understanding of discrete-valued time series data. The first part is concerned with the measurement of the serial dependence of binary time series. In early studies the classical autocorrelation function was used, which, however, may not be an effective and informative means of revealing the dependence feature of a binary time series. Recently, the autopersistence function has been proposed as an alternative to the autocorrelation function for binary time series. The theoretical autopersistence functions and their sample analogues, the autopersistence graphs, are studied within a binary autoregressive model. Some properties of the autopcrsistencc functions and the asymptotic properties of the autopersistence graphs are discussed, justifying that the antopersistence graphs can be used to assess the dependence feature. Besides binary time series, intcger-vall1ed time series arc perhaps the most commonly seen discrete-valued time series. A generalization of the Poisson autoregression model for non-negative integer-valued time series is proposed by imposing an additional threshold structure on the latent mean process of the Poisson autoregression. The geometric ergodicity of the threshold Poisson autoregression with perburbations in the latent mean process and the stochastic stability of the threshold Poisson autoregression are obtained. The maximum likelihood estimator for the parameters is discussed and the conditions for its consistency and asymptotic normally are given as well. Furthermore, there is an increasing need for models of integer-valued time series which can accommodate series with negative observations and dependence structure more complicated than that of an autoregression or a moving average. In this regard, an integer-valued autoregressive moving average process induced by the so-called signed thinning operator is proposed. The first-order model is studied in detail. The conditions for the existence of stationary solution and the existence of finite moments are discussed under general assumptions. Under some further assumptions about the signed thinning operators and the distribution of the innovation, a moment-based estimator for the parameters is proposed, whose consistency and asymptotic normality are also proved. The problem of conducting one-step-ahead forecast is also considered based on hidden Markov chain theory. Simulation studies arc conducted to demonstrate the validity of the theories and methods established above. Real data analysis such as the annual counts of major earthquakes data are also presented to show their potential usefulness in applications. / published_or_final_version / Statistics and Actuarial Science / Doctoral / Doctor of Philosophy
613

Theory and application of time-frequency analysis to transient phenomena in electric power and other physical systems

Shin, Yong June 28 August 2008 (has links)
Not available / text
614

XLPE-cable Production Optimization : Setup time Reduction at Armoring line

Hedlund, Björn January 2014 (has links)
At ABB’s high voltage cable factory in Karlskrona, there is a line production that is regarded as a bottleneck. The production rate at this workplace as well as the large variations of setups has created two major problems. The first problem is that it has become difficult for the planning department to determine the lead times for delivery to the customers. The other problem is that the long setup times has made this line production the bottleneck of the whole production. The factory at ABB HVC includes a number of line productions, where each line has their own purpose and value adding processes. The armoring line AR50 that this project has the focus to improve has the last value adding processes for the factory’s main product. The factory’s main product is the Cross-Linked Polyethylene cable, shortened XLPE. There are several different advantages with the XLPE-cable system. First of all they are maintenance-free and environmentally friendly. The main reason that the XLPE-cable is environmentally friendly is because it have low electrical losses. Since the submarine cables are underground the cables are invisible and not effected by weather conditions. This project implements the method SMED as well as various methods from the LEAN transcript in order to reduce the setup times and create a more stable and effficient production. An Ishikawa diagram were used in order to determine the root causes of the problems. Later both technical and management solutions were proposed and implemented. The project has concluded impressive results regarding setup time reduction and annual cost savings. It also enlightens the large potential for further improvement. This project will be continued during the year of 2014 in order to implement the proposed solutions. The future improvements are not just technical but also related to management and group dynamics.
615

The conceptions of time, space and motion in early Indian philosophy

Junankar, N. S. January 1937 (has links)
No description available.
616

INVESTIGATION OF NEUTRON SLOWING-DOWN DYNAMICS

Rooney, V. (Vernon) January 1970 (has links)
No description available.
617

Fault-tolerant real-time multiprocessor scheduling

Srinivasan, Anand 26 August 2015 (has links)
Graduate
618

Distributed real-time control via the internet

Srivastava, Abhinav 30 September 2004 (has links)
The objective of this research is to demonstrate experimentally the feasibility of using the Internet for a Distributed Control System (DCS). An algorithm has been designed and implemented to ensure stability of the system in the presence of upper bounded time-varying delays. A single actuator magnetic ball levitation system has been used as a test bed to validate the proposed algorithm. Experiments were performed to obtain the round-trip time delay between the host PC and the client PC under varying network loads and at different times. A digital real-time lead-lag controller was implemented for the magnetic levitation system. Upper bounds for the artificial and experimental round-trip time delay that can be accommodated in the control loop for the maglev system were estimated. The artificial time delay was based on various probabilistic distributions and was generated through MATLAB. To accommodate sporadic surges in time delays that are more than these upper bounds, a timeout algorithm with sensor data prediction was developed. Experiments were performed to validate the satisfactory performance of this algorithm in the presence of the bonded sporadic excessive time delays.
619

Time Perspective, Well-being, and Hope

McElheran, Jesse J.N. Unknown Date
Time perspective (TP) represents a person's tendency to focus more on the past, present or future and has been shown to predict measures of individual well-being (Boniwell, et al., 2010). This study examined the relationship between one’s time perspective and measures of hedonic and eudaimonic well-being, specifically positive and negative affect, satisfaction with life, and self-actualization. Furthermore, this study explored hope across the different time perspectives. Two hundred and eighty eight Canadian adults were recruited via social media websites. Hierarchical cluster analysis was used to validate the Balanced Time Perspective construct and suggests that the Hedonism time profile is as adaptive as the Balanced Time Perspective. Correlational analysis was used to examine the association between hope and the five different time perspectives. Results indicate that the past positive time perspective is most predictive of high levels of hope. Results were discussed and integrated into current time perspective and hope research.
620

A model for time-independent and time-dependent damage evolution and their influence on creep of multidirectional Polymer composite laminates

Asadi, Amir 10 June 2013 (has links)
Application of polymer matrix composites in engineering structures has been steadily increasing over the past five decades. Multidirectional polymer composites are one class of continuous fiber reinforced polymer matrix composites used in aerospace structures, where the desired mechanical performance outweighs the cost. Their modulus and strength degrade with time (known as creep and creep rupture) during the service, owing to the viscos-elasticity of the polymer matrix. Additional contribution to this degradation comes from various damage modes developed in the plies of the composite with time and identified in this thesis as TDD (Time Dependent Damage). These damage modes may also develop due to process-induced residual stresses, and during loading to the service load, identified as TID (Time Independent Damage). TID influences the TDD, the creep and the creep rupture. The objective of this thesis is to develop a model to predict the evolution of TID and TDD in multiple plies of a laminate and their influence on creep. The predominant damage mode, transverse cracking, is modeled in this study. The model consists of four modules, PIS, QSL, SL, and VA. The PIS, QSL, and SL moduli predict changes in ply stresses for incremental change in temperature, stress, and time respectively, using lamination theory and assuming linear elastic behavior of the plies during an incremental step. In parallel, each module predicts the stored elastic energy in each ply after each incremental step and compares it with a critical stored elastic energy criterion to determine if a ply would crack. If fracture is predicted, the VA module based on variational analysis, is invoked to determine the crack density and the perturbation in ply stresses due to cracking. The perturbation stresses are used by the module that invoked the VA module to determine the ply stresses after cracking during the current incremental step. The model predictions for a [±45/90]s laminate, at two test temperatures (80C and 180C) and four stresses in the range of 20–54 MPa, compare very well with experimental results validating the model.

Page generated in 0.0779 seconds