• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Energy Efficient Capacitive Body Channel Access Schemes for Internet of Bodies

AlAmoudi, Abeer 07 1900 (has links)
The Internet of Bodies (IoB) is a wireless network of on-body or in-body commu- nication formed by wearable, ingestible, injectable, and implantable smart devices. The vast majority of on-body communications, is typically required to be within <5 cm vicinity of the human body. The radiative nature of currently used RF devices leads to wasted energy that is radiated in unneeded off-body directions. Consequently, it degrades energy efficiency, introduces co-existence and interference problems, and imposes security threats on sensitive data. As an alternative, the capacitive body channel communication (BCC) couples the signal (between 10 kHz-100 MHZ) to the human body, which is more conductive than air. Hence, it provides lower loss, bet- ter privacy and confidentiality, and nJ/bit to pJ/bit energy efficiency. Accordingly, our work investigates orthogonal and non-orthogonal capacitive body channel access schemes for ultralow-power IoB networks with or without cooperation. We derive the closed-form optimal power allocation for uplink and downlink transmissions and the maximum number of IoB nodes satisfying a reliable and feasible network for non- cooperative schemes. The cooperative schemes necessitate joint optimization of both power and phase time allocations. We achieve this by using the Golden-Section search algorithm to minimize the power consumption in both phases.
2

Contribution au dimensionnement d'une liaison radio sur le corps humain :études canal et antenne à 60 GHz

Razafimahatratra, Solofo 14 November 2017 (has links) (PDF)
The band around 60 GHz is interesting for BAN applications mainly for lowerinterference than at microwave frequencies, wide available band adapted to On-Off Keying(OOK) modulation for low energy consumption and low data rate communication (under10 Mbps), antenna miniaturization. Nevertheless, due to high attenuation at this frequency,the design of a reliable and energy-effective communications for BANs requires a detailedanalysis of the body channel. A planar and compact SIW horn antenna was designed and usedfor body channel measurements at 60 GHz. The main contribution in the antenna design is thebandwidth enhancement covering the whole available band around 60 GHz compared to thesame antenna type available at this frequency. The on-body measurements with this antennashow that short-distance and LOS (Line Of Sight) links are possible at 60 GHz. The bodydynamic is taken into account by statistical off-body channel measurements. For the firsttime, measurements are done for the same scenarios at 60 GHz and another frequency in theUltra WideBand suitable with OOK impulse radio modulation. By taking into accounttransmission power standards and low power consumption receivers sensitivity in theliterature, the potentiality of 60 GHz for BAN is shown with an outage probability lower than8 % whereas this parameter is lower than 15 % at 4 GHz. When characterizing antenna onbody, difficulties arise for antenna de-embedding due to the antenna-body coupling. In fact,the antenna gain depends on transmitter-receiver distance on body. For the first time, aformulation of the vertical dipole gain on body is given. Also a new theoretical approachbased on the complex images method is proposed to compare two types of canonical antennaradiating on body. A vertical dipole and different rectangular apertures are normalizedthrough their input impedance with the same accepted power. The aperture input impedanceformulation has been developed during this study. The aperture efficiencies are 10% higherwhen antennas are at a height lower than 3 mm above the body phantom. The received powerincreases with the antenna size only for phantom direct touch, the difference among antennasis lower than 4 dB for the considered antennas limited with a monomode configuration. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
3

Electro-Quasistatic Human Body Communication: From Bio-Physical Modeling to Broadband Circuits and HCI Applications

Shovan Maity (7046372) 15 August 2019 (has links)
<div>Decades of scaling in semiconductor technology has resulted in a drastic reduction in the cost and size of unit computing. This has enabled computing capabilities in small form factor wearable and implantable devices. These devices communicate with each other to form a network around the body, commonly known as the Wireless Body Area Network (WBAN). Radio wave transmission over air is the commonly used method of communication among these devices. However, the human body can be used as the communication medium by utilizing its electrical conductivity property. This has given rise to Human Body Communication (HBC), which provides higher energy efficiency and enhanced security compared to over the air radio wave communication enabling applications like remote health monitoring, secure authentication. In this thesis we characterize the human body channel characteristics at low frequencies, utilize the insight obtained from the channel characterization to build high energy-efficiency, interference-robust circuits and demonstrate the security and selectivity aspect of HBC through a Common Off the Shelf (COTS) component-based system. First, we characterize the response of the human body channel in the 10KHz1MHz frequency range with wearable transmitter/ receiver to study the feasibility of using it as a broadband communication channel. Voltage mode measurements with capacitive termination show almost at-band response in this frequency range, establishing the body as a broadband channel. The body channel response is also measured across different interaction scenario between two wearable devices and a wearable and a computer. A bio-physical model of the HBC channel is developed to explain the measurement results and the wide discrepancies found in previous studies.We analyze the safety aspect of different type of HBC by carrying out theoretical circuit and FEM based simulations. A study is carried out among multiple subjects to assess the effect of HBC on the vital parameters of a subject. A statistical analysis of the results shows no signicant change in the vital parameters before and during HBC transmission, validating the theoretical simulations showing >!000x safety margin compared to the established ICNIRP guidelines. Next, an HBC transceiver is built utilizing the wire-like, broadband human body channel to enable high energy efficiency. The transceiver also provides robustness to ambient interference picked up by the human body through integration followed by periodic sampling. The transceiver achieves 6.3pJ/bit energy effciency while operating at a maximum data rate of 30Mbps, while providing -30dB interference tolerant operation. Finally, a COTS based HBC prototype is developed, which utilizes low frequency operation to enable selective and physically secure communication strictly during touch for Human Computer Interaction (HCI) between two wearable devices for the rst time. A thorough study of the effect of different parameters such as environment, posture, subject variation, on the channel loss has also been characterized to build a robust HBC system working across different use cases. Applications such as secure authentication (e.g. opening a door, pairing a smart device) and information exchange (e.g. payment, image, medical data, personal profile transfer) through touch is demonstrated to show the impact of HBC in enabling new human-machine interaction modalities.</div>
4

Cooperative wireless channel characterization and modeling: application to body area and cellular networks

Liu, Lingfeng 23 March 2012 (has links)
Cooperative wireless communication is an attractive technique to explore the spatial channel resources by coordination across multiple links, which can greatly improve the communication performance over single links. In this dissertation, we study the cooperative multi-link channel properties by geometric approaches in body area networks (BANs) and cellular networks respectively.<p><p>In the part of BANs, the dynamic narrowband on-body channels under body motions are modeled statistically on their temporal and spatial fading based on anechoic and indoor measurements. Common body scattering is observed to form inter-link correlation between links closely distributed and between links having synchronized movements of communication nodes. An analytical model is developed to explain the physical mechanisms of the dynamic body scattering. The on-body channel impacts to simple cooperation protocols are evaluated based on realistic measurements. <p><p>In the part of cellular networks, the cluster-level multi-link COST 2100 MIMO channel model is developed with concrete modeling concepts, complete parameterization and implementation methods, and a compatible structure for both single-link and multi-link scenarios. The cluster link-commonness is introduced to the model to describe the multi-link properties. The multi-link impacts by the model are also evaluated in a distributed MIMO system by comparing its sum-rate capacity at different ratios of cluster link-commonness. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished

Page generated in 0.0307 seconds