• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SV-Means: A Fast One-Class Support Vector Machine-Based Level Set Estimator

Pavy, Anne M. January 2017 (has links)
No description available.
2

Deep Learning One-Class Classification With Support Vector Methods

Hampton, Hayden D 01 January 2024 (has links) (PDF)
Through the specialized lens of one-class classification, anomalies–irregular observations that uncharacteristically diverge from normative data patterns–are comprehensively studied. This dissertation focuses on advancing boundary-based methods in one-class classification, a critical approach to anomaly detection. These methodologies delineate optimal decision boundaries, thereby facilitating a distinct separation between normal and anomalous observations. Encompassing traditional approaches such as One-Class Support Vector Machine and Support Vector Data Description, recent adaptations in deep learning offer a rich ground for innovation in anomaly detection. This dissertation proposes three novel deep learning methods for one-class classification, aiming to enhance the efficacy and accuracy of anomaly detection in an era where data volume and complexity present unprecedented challenges. The first two methods are designed for tabular data from a least squares perspective. Formulating these optimization problems within a least squares framework offers notable advantages. It facilitates the derivation of closed-form solutions for critical gradients that largely influence the optimization procedure. Moreover, this approach circumvents the prevalent issue of degenerate or uninformative solutions, a challenge often associated with these types of deep learning algorithms. The third method is designed for second-order tensors. This proposed method has certain computational advantages and alleviates the need for vectorization, which can lead to structural information loss when spatial or contextual relationships exist in the data structure. The performance of the three proposed methods are demonstrated with simulation studies and real-world datasets. Compared to kernel-based one-class classification methods, the proposed deep learning methods achieve significantly better performance under the settings considered.
3

Evaluation of Supervised Machine LearningAlgorithms for Detecting Anomalies in Vehicle’s Off-Board Sensor Data

Wahab, Nor-Ul January 2018 (has links)
A diesel particulate filter (DPF) is designed to physically remove diesel particulate matter or soot from the exhaust gas of a diesel engine. Frequently replacing DPF is a waste of resource and waiting for full utilization is risky and very costly, so, what is the optimal time/milage to change DPF? Answering this question is very difficult without knowing when the DPF is changed in a vehicle. We are finding the answer with supervised machine learning algorithms for detecting anomalies in vehicles off-board sensor data (operational data of vehicles). Filter change is considered an anomaly because it is rare as compared to normal data. Non-sequential machine learning algorithms for anomaly detection like oneclass support vector machine (OC-SVM), k-nearest neighbor (K-NN), and random forest (RF) are applied for the first time on DPF dataset. The dataset is unbalanced, and accuracy is found misleading as a performance measure for the algorithms. Precision, recall, and F1-score are found good measure for the performance of the machine learning algorithms when the data is unbalanced. RF gave highest F1-score of 0.55 than K-NN (0.52) and OCSVM (0.51). It means that RF perform better than K-NN and OC-SVM but after further investigation it is concluded that the results are not satisfactory. However, a sequential approach should have been tried which could yield better result.
4

Adaptive Anomaly Detection for Large IoT Datasets with Machine Learning and Transfer Learning

Negus, Andra Stefania January 2020 (has links)
As more IoT devices enter the market it becomes increasingly important to develop reliable and adaptive ways of dealing with the data they generate. These must address data quality and reliability. Such solutions could benefit both the device producers and their customers who, as a result, could receive faster and better customer support services. Thus, this project's goal is twofold. First, it is to identify faulty data points generated by such devices. Second, it is to evaluate whether the knowledge gained from available/known sensors and appliances is transferable to other sensors on similar devices. This would make it possible to evaluate the behaviour of new appliances as soon as they are first switched on, rather than after sufficient data from them has been collected. This project uses time series data from three appliances: washing machine, washer&dryer and refrigerator. For these, two solutions are developed and tested: one for categorical and another for numerical variables. Categorical variables are analysed using the Average Value Frequency and the pure frequency of state-transition methods. Due to the limited number of possible states, the pure frequency proves to be the better solution, and the knowledge gained is transferred from the source device to the target one, with moderate success. Numerical variables are analysed using a One-class Support Vector Machine pipeline, with very promising results. Further, learning and forgetting mechanisms are developed to allow for the pipelines to adapt to changes in appliance patterns of behaviour. This includes a decay function for the numerical variables solution. Interestingly, the different weights for the source and target have little to no impact on the quality of the classification. / Nya IoT-enheter träder in på marknaden så det blir allt viktigare att utveckla tillförlitliga och anpassningsbara sätt att hantera de data de genererar. Dessa bör hantera datakvalitet och tillförlitlig- het. Sådana lösningar kan gynna båda tillverkarna av apparater och deras kunder som som ett resultat kan dra nytta av snabbare och bättre kundsupport / tjänster. Således har detta projekt två mål. Det första är att identifiera felaktiga datapunkter som genereras av sådana enheter. För det andra är det att utvärdera om kunskapen från tillgängliga / kända sensorer och apparater kan överföras till andra sensorer på liknande enheter. Detta skulle göra det möjligt att utvärdera beteendet hos nya apparater så snart de slås på första gången, snarare än efter att tillräcklig information från dem har samlats in. Detta projekt använder tidsseriedata från tre apparater: tvättmaskin, tvättmaskin och torktumlare och kylskåp. För dessa utvecklas och testas två lösningar: en för kategoriska variabler och en annan för numeriska variabler. De kategoriska variablerna analyseras med två metoder: Average Value Frequency och den rena frekvensen för tillståndsövergång. På grund av det begränsade antalet möjliga tillstånd visar sig den rena frekvensen vara den bättre lösningen, och kunskapen som erhålls överförs från källanordningen till målet, med måttlig framgång. De numeriska variablerna analyseras med hjälp av en One-class Support Vector Machine-pipeline, med mycket lovande resultat. Vidare utvecklas inlärnings- och glömningsmekanismer för att möjliggöra för rörledningarna att anpassa sig till förändringar i apparatens beteendemönster. Detta inkluderar en sönderfallningsfunktion för den numeriska variabellösningen. Intressant är att de olika vikterna för källan och målet har liten eller ingen inverkan på kvaliteten på klassificeringen.
5

Exploring Integration of Predictive Maintenance using Anomaly Detection : Enhancing Productivity in Manufacturing / Utforska integration av prediktivt underhåll med hjälp av avvikelsedetektering : Förbättra produktiviteten inom tillverkning

Bülund, Malin January 2024 (has links)
In the manufacturing industry, predictive maintenance (PdM) stands out by leveraging data analytics and IoT technologies to predict machine failures, offering a significant advancement over traditional reactive and scheduled maintenance practices. The aim of this thesis was to examine how anomaly detection algorithms could be utilized to anticipate potential breakdowns in manufacturing operations, while also investigating the feasibility and potential benefits of integrating PdM strategies into a production line. The methodology of this projectconsisted of a literature review, application of machine learning (ML) algorithms, and conducting interviews. Firstly, the literature review provided a foundational basis to explore the benefits of PdM and its impact on production line productivity, thereby shaping the development of interview questions. Secondly, ML algorithms were employed to analyze data and predict equipment failures. The algorithms used in this project were: Isolation Forest (IF), Local Outlier Factor (LOF), Logistic Regression (LR), One-Class Support Vector Machine(OC-SVM) and Random Forest (RF). Lastly, interviews with production line personnel provided qualitative insights into the current maintenance practices and perceptions of PdM. The findings from this project underscore the efficacy of the IF model in identifying potential equipment failures, emphasizing its key role in improving future PdM strategies to enhance maintenance schedules and boost operational efficiency. Insights gained from both literature and interviews underscore the transformative potential of PdM in refining maintenance strategies, enhancing operational efficiency, and minimizing unplanned downtime. More broadly, the successful implementation of these technologies is expected to revolutionize manufacturing processes, driving towards more sustainable and efficient industrial operations. / I tillverkningsindustrin utmärker sig prediktivt underhåll (PdM) genom att använda dataanalys och IoT-teknologier för att förutse maskinfel, vilket erbjuder ett betydande framsteg jämfört med traditionella reaktiva och schemalagda underhållsstrategier. Syftet med denna avhandling var att undersöka hur algoritmer för avvikelsedetektering kunde användas för att förutse potentiella haverier i tillverkningsoperationer, samtidigt som genomförbarheten och de potentiella fördelarna med att integrera PdM-strategier i en produktionslinje undersöktes. Metodologin för detta projekt bestod av en litteraturöversikt, tillämpning av maskininlärningsalgoritmer (ML) och genomförande av intervjuer. Först och främst gav litteraturöversikten en grundläggande bas för att utforska fördelarna med PdM och dess inverkan på produktionslinjens produktivitet, vilket därmed påverkade utformningen av intervjufrågorna. För det andra användes ML-algoritmer för att analysera data och förutsäga utrustningsfel. Algoritmerna som användes i detta projekt var: Isolation Forest (IF), Local Outlier Factor (LOF), Logistic Regression (LR), One-Class Support Vector Machine (OCSVM) och Random Forest (RF). Slutligen gav intervjuer med produktionslinjepersonal kvalitativa insikter i de nuvarande underhållsstrategierna och uppfattningarna om PdM.Resultaten från detta projekt understryker effektiviteten hos IF-modellen för att identifiera potentiella utrustningsfel, vilket betonar dess centrala roll i att förbättra framtida PdM-strategier för att förbättra underhållsscheman och öka den operativa effektiviteten. Insikter vunna från både litteratur och intervjuer understryker PdM:s transformativa potential att finslipa underhållsstrategier, öka operativ effektivitet och minimera oplanerade driftstopp. Mer generellt förväntas den framgångsrika implementeringen av dessa teknologier revolutionera tillverkningsprocesser och driva mot mer hållbara och effektiva industriella operationer.
6

Evaluation of machine learning methods for anomaly detection in combined heat and power plant

Carls, Fredrik January 2019 (has links)
In the hope to increase the detection rate of faults in combined heat and power plant boilers thus lowering unplanned maintenance three machine learning models are constructed and evaluated. The algorithms; k-Nearest Neighbor, One-Class Support Vector Machine, and Auto-encoder have a proven track record in research for anomaly detection, but are relatively unexplored for industrial applications such as this one due to the difficulty in collecting non-artificial labeled data in the field.The baseline versions of the k-Nearest Neighbor and Auto-encoder performed very similarly. Nevertheless, the Auto-encoder was slightly better and reached an area under the precision-recall curve (AUPRC) of 0.966 and 0.615 on the trainingand test period, respectively. However, no sufficiently good results were reached with the One-Class Support Vector Machine. The Auto-encoder was made more sophisticated to see how much performance could be increased. It was found that the AUPRC could be increased to 0.987 and 0.801 on the trainingand test period, respectively. Additionally, the model was able to detect and generate one alarm for each incident period that occurred under the test period.The conclusion is that ML can successfully be utilized to detect faults at an earlier stage and potentially circumvent otherwise costly unplanned maintenance. Nevertheless, there is still a lot of room for improvements in the model and the collection of the data. / I hopp om att öka identifieringsgraden av störningar i kraftvärmepannor och därigenom minska oplanerat underhåll konstrueras och evalueras tre maskininlärningsmodeller.Algoritmerna; k-Nearest Neighbor, One-Class Support Vector Machine, och Autoencoder har bevisad framgång inom forskning av anomalidetektion, men är relativt outforskade för industriella applikationer som denna på grund av svårigheten att samla in icke-artificiell uppmärkt data inom området.Grundversionerna av k-Nearest Neighbor och Auto-encoder presterade nästan likvärdigt. Dock var Auto-encoder-modellen lite bättre och nådde ett AUPRC-värde av 0.966 respektive 0.615 på träningsoch testperioden. Inget tillräckligt bra resultat nåddes med One-Class Support Vector Machine. Auto-encoder-modellen gjordes mer sofistikerad för att se hur mycket prestandan kunde ökas. Det visade sig att AUPRC-värdet kunde ökas till 0.987 respektive 0.801 under träningsoch testperioden. Dessutom lyckades modellen identifiera och generera ett larm vardera för alla incidenter under testperioden. Slutsatsen är att ML framgångsrikt kan användas för att identifiera störningar iett tidigare skede och därigenom potentiellt kringgå i annat fall dyra oplanerade underhåll. Emellertid finns det fortfarande mycket utrymme för förbättringar av modellen samt inom insamlingen av data.

Page generated in 0.1233 seconds