Spelling suggestions: "subject:"openchannel flow"" "subject:"penghuchannel flow""
11 |
VORTEX MODEL OF OPEN CHANNEL FLOWS WITH GRAVEL BEDSBelcher, Brian James 01 January 2009 (has links)
Turbulent structures are known to be important physical processes in gravel-bed rivers. A number of limitations exist that prohibit the advancement and prediction of turbulence structures for optimization of civil infrastructure, biological habitats and sediment transport in gravel-bed rivers. This includes measurement limitations that prohibit characterization of size and strength of turbulent structures in the riverine environment for different case studies as well as traditional numerical modeling limitations that prohibit modeling and prediction of turbulent structure for heterogeneous beds under high Reynolds number flows using the Navier-Stokes equations. While these limitations exist, researchers have developed various theories for the structure of turbulence in boundary layer flows including large eddies in gravel-bed rivers. While these theories have varied in details and applicable conditions, a common hypothesis has been a structural organization in the fluid which links eddies formed at the wall to coherent turbulent structures such as large eddies which may be observed vertically across the entire flow depth in an open channel. Recently physics has also seen the advancement of topological fluid mechanical ideas concerned with the study of vortex structures, braids, links and knots in velocity vector fields. In the present study the structural organization hypothesis is investigated with topological fluid mechanics and experimental results which are used to derive a vortex model for gravel-bed flows. Velocity field measurements in gravel-bed flow conditions in the laboratory were used to characterize temporal and spatial structures which may be attributed to vortex motions and reconnection phenomena. Turbulent velocity time series data were measured with ADV and decomposed using statistical decompositions to measure turbulent length scales. PIV was used to measure spatial velocity vector fields which were decomposed with filtering techniques for flow visualization. Under the specific conditions of a turbulent burst the fluid domain is organized as a braided flow of vortices connected by prime knot patterns of thin-cored flux tubes embedded on an abstract vortex surface itself having topology of a Klein bottle. This model explains observed streamline patterns in the vicinity of a strong turbulent burst in a gravel-bed river as a coherent structure in the turbulent velocity field.
|
12 |
A one-dimensional Boussinesq-type momentum model for steady rapidly varied open channel flowsZerihun, Yebegaeshet Tsegaye Unknown Date (has links)
The depth-averaged Saint-Venant equations, which are used for most computational flow models, are adequate in simulating open channel flows with insignificant curvatures of streamlines. However, these equations are insufficient when applied to flow problems where the effects of non-hydrostatic pressure distribution are predominant. This study provides a comprehensive examination of the feasibility of a simple one-dimensional Boussinesq-type model equation for such types of flow problems. This equation, which allows for curvature of the free surface and a non-hydrostatic pressure distribution, is derived using the momentum principle together with the assumption of a constant centrifugal term at a vertical section. Besides, two Boussinesq-type model equations that incorporate different degrees of corrections for the effects of the curvature of the streamline are investigated in this work. One model, the weakly curved flow equation model, is the simplified version of the flow model based on a constant centrifugal term for flow situations that involve weak streamline curvature and slope, and the other, the Boussinesq-type momentum equation linear model is developed based on the assumption of a linear variation of centrifugal term with depth.
|
13 |
A one-dimensional Boussinesq-type momentum model for steady rapidly varied open channel flowsZerihun, Yebegaeshet Tsegaye Unknown Date (has links)
The depth-averaged Saint-Venant equations, which are used for most computational flow models, are adequate in simulating open channel flows with insignificant curvatures of streamlines. However, these equations are insufficient when applied to flow problems where the effects of non-hydrostatic pressure distribution are predominant. This study provides a comprehensive examination of the feasibility of a simple one-dimensional Boussinesq-type model equation for such types of flow problems. This equation, which allows for curvature of the free surface and a non-hydrostatic pressure distribution, is derived using the momentum principle together with the assumption of a constant centrifugal term at a vertical section. Besides, two Boussinesq-type model equations that incorporate different degrees of corrections for the effects of the curvature of the streamline are investigated in this work. One model, the weakly curved flow equation model, is the simplified version of the flow model based on a constant centrifugal term for flow situations that involve weak streamline curvature and slope, and the other, the Boussinesq-type momentum equation linear model is developed based on the assumption of a linear variation of centrifugal term with depth.
|
14 |
Experimental Investigation On Sharp Crested Rectangular WeirsSisman, H. Cigdem 01 August 2009 (has links) (PDF)
Sharp crested rectangular weirs used for discharge measurement
purposes in open channel hydraulics are investigated experimentally. A series
of experiments were conducted by measuring discharge and head over the
weir for different weir heights for full width weir. It is seen that after a certain
weir height, head and discharge relation does not change. Hence a constant
weir height is determined. For that height / discharge and head over the weir
are measured for variable weir width, starting from the full width weir to slit
weir. Description of the discharge coefficient valid for the full range of weir
widths and an empirical expression involving dimensionless flow variables is
aimed. Experimental data obtained for this purpose and the results of the
regression analysis performed are represented.
|
15 |
3D numerical simulation of turbulent open-channel flow through vegetationKim, Su Jin 14 November 2011 (has links)
A comprehensive understanding of the hydrodynamics in vegetated open-channels and flow-vegetation interaction is of high interest to researchers and practitioners alike for instance in the content of river and coastal restoration schemes. The focus of this study was to investigate the effect of the presence of vegetation on flow resistance, turbulence statistics, and the instantaneous flow in open channels by performing three-dimensional computational-fluid-dynamics (CFD) simulations.
Firstly, fully developed turbulent flow in fully-vegetated channel was analyzed by employing the method of high-resolution Large-Eddy Simulation (LES). Flow through a staggered array of rigid, emergent cylinders was simulated and the LES was validated through experiments. After validation, numerical simulations were performed at an extended parameter range of two different cylinder Reynolds numbers (ReD = 500 and 1340) and three different vegetation densities (φ = 0.016, 0.063, and 0.251). Flow structures and statistics were analyzed on the instantaneous flow and the effect of the vegetation density and cylinder Reynolds number was assessed. Moreover, drag forces exerted on the cylinders were calculated explicitly, and the effect of both ReD and φ on the drag coefficient was quantified. Secondly, two new alternative simulation strategies, a RANS based strategy with a vegetative closure model and a low-resolution Large-Eddy Simulation, were devised. They were evaluated by simulating several experimental cases with diverse conditions of the cylinder arrangement (i.e., staggered vs. random distribution), vegetation densities (φ = 0.016, 0.022, 0.063, 0.087, 0.091, 0.150, and 0.251), and cylinder Reynolds number (ReD = 170 - 1700). For the RANS based strategy, the importance of a-priori knowledge was assessed, and for the low-resolution LES, the efficiency and accuracy was demonstrated. Finally, a numerical strategy based on a porosity approach was developed and applied to open-channel flow through a natural plant. The simulated velocities were compared with experimentally acquired ones and results showed reasonable agreement.
The results obtained in this research contribute to the understanding of fundamental mechanism of flow-vegetation interaction in vegetated open-channels, resolving turbulent flow-vegetation interaction explicitly. In addition, the new numerical strategies developed as part of this research are expected to allow describing the behavior of turbulent flow through artificial and natural vegetation with high efficiency and accuracy.
|
16 |
Modelling of Bingham Suspensional Flow : Influence of Viscosity and Particle Properties Applicable to Cementitious MaterialsGram, Annika January 2015 (has links)
Simulation of fresh concrete flow has spurged with the advent of Self-Compacting Concrete, SCC. The fresh concrete rheology must be compatible with the reinforced formwork geometry to ensure complete and reliable form filling with smooth concrete surfaces. Predicting flow behavior in the formwork and linking the required rheological parameters to flow tests performed on the site will ensure an optimization of the casting process. In this thesis, numerical simulation of concrete flow and particle behaviour is investigated, using both discrete as well as a continuous approach. Good correspondence was achieved with a Bingham material model used to simulate concrete laboratory tests (e.g. slump flow). It is known that aggregate properties such as size, shape and surface roughness as well as its grading curve affect fresh concrete properties. An increased share of non-spherical particles in concrete increases the level of yield stress, τ0, and plastic viscosity, µpl. The yield stress level may be decreased by adding superplasticizers, however, the plastic viscosity may not. An explanation for the behaviour of particles is sought after experimentally, analytically and numerically. Bingham parameter plastic viscosity is experimentally linked to particle shape. It was found that large particles orient themselves aligning their major axis with the fluid flow, whereas small particles in the colloidal range may rotate between larger particles. The rotation of crushed, non-spherical fine particles as well as particles of a few microns that agglomorate leads to an increased viscosity of the fluid. Generally, numerical simulation of large scale quantitative analyses are performed rather smoothly with the continuous approach. Smaller scale details and phenomena are better captured qualitatively with the discrete particle approach. As computer speed and capacity constantly evolves, simulation detail and sample volume will be allowed to increase. A future merging of the homogeneous fluid model with the particle approach to form particles in the fluid will feature the flow of concrete as the physical suspension that it represents. One single ellipsoidal particle in fluid was studied as a first step. / <p>QC 20150326</p>
|
17 |
FUNDAMENTAL STUDY ON UNDULAR AND DISCONTINUOUS HYDRAULIC JUMPS BY MEANS OF ASIMPLIFIED MOMENTUM EQUATION / 簡易型運動量方程式を用いた波状跳水及び不連続跳水に関する基礎的研究THIN, THWE THWE 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22756号 / 工博第4755号 / 新制||工||1744(附属図書館) / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 細田 尚, 教授 戸田 圭一, 准教授 音田 慎一郎 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
18 |
Ability of ADV Measurements to Detect Turbulence Differences Between Angular and Rounded Gravel Beds of Intermediate - Roughness ScaleHaws, Benjamin B. 16 July 2008 (has links)
A set of laboratory experiments was carried out to distinguish flow characteristics(bed origin, shear velocity, turbulence intensity, turbulent kinetic energy) between beds of differing gravel angularity. Ten vertical profiles of velocity measurements were taken from angular and rounded fixed gravel beds with a 16 MHz micro acoustic Doppler velocimeter (ADV) sampling at 50 Hz. Both gravel beds had a bottom slope of 0.2% and were in the intermediate - roughness scale. Shear velocities were calculated using three common methods: St Venant, Reynolds stress, and Clauser. The Reynolds stress method resulted in the closest visual match to turbulence distributions proposed by others. The bed origin was found to be on average 0.24D50 and 0.21D50 for the angular and rounded gravel beds respectively. These differences, however, were not statistically significant. Turbulence intensity within 20% of the bed showed considerable scatter. The difficult measuring conditions likely prevented the ADV to detect significant differences of turbulence intensity in the longitudinal and transverse directions between the two gravel beds. But the ADV measurements in the vertical direction may well resolve turbulence even in difficult flow conditions (determined by acoustic Doppler performance curve formulation). For the vertical direction, the angular gravel bed showed an increase in TImax that extended throughout the profile. The increased turbulence intensity had a concomitant effect of increasing the turbulent kinetic energy for the angular bed.
|
19 |
The pattern of surface waves in a shallow free surface flowHoroshenkov, Kirill V., Nichols, Andrew, Tait, Simon J., Maximov, G.A. January 2013 (has links)
Yes / This work presents new water surface elevation data including evidence of the spatial correlation of water surface waves generated in shallow water flows over a gravel bed without appreciable bed forms. Careful laboratory experiments have shown that these water surface waves are not well-known gravity or capillary waves but are caused by a different physical phenomenon. In the flow conditions studied, the shear present in shallow flows generates flow structures, which rise and impact on the water-air interface. It is shown that the spatial correlation function observed for these water surface waves can be approximated by the following analytical expression W(rho) = e(-rho 2/2 sigma w2)COS(2 pi L-0(-1)rho). The proposed approximation depends on the spatial correlation radius, sigma(w), characteristic spatial period, L-0, and spatial lag, . This approximation holds for all the hydraulic conditions examined in this study. It is shown that L-0 relates to the depth-averaged flow velocity and carries information on the shape of the vertical velocity profile and bed roughness. It is also shown that sigma(w) is related to the hydraulic roughness and the flow Reynolds number.
|
20 |
Development of an Equation Independent of Manning's Coefficient n for Depth Prediction in Partially-Filled Circular CulvertsMangin, Steven F. 11 October 2010 (has links)
No description available.
|
Page generated in 0.0422 seconds