• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generalisation de la theorie arithmetique des D-modules a la geometrie logarithmique

Montagnon, Claude 22 November 2002 (has links) (PDF)
L'objectif de cette these est d'etendre la theorie arithmetique des D-modules a la geometrie logarithmique. Nous commencons par definir les faisceaux d'operateurs differentiels de niveau m. Nous donnons une description de ces faisceaux D(m) et de leur structure en coordonnees locales dans le cas log-lisse, analogue a celle obtenue par Berthelot dans le cas non logarithmique. Nous etudions ensuite l'action du morphisme de Frobenius sur les modules sur ces faisceaux d'anneaux. Nous montrons tout d'abord que F* induit une elevation du niveau. Le theoreme de descente demontre par Berthelot pour les schemas usuel est par contre en defaut dans le cadre logarithmique. Nous reprenons donc les travaux de Lorenzon, qui associe a un log-schema une algebre canonique A, et nous etablissons une equivalence de categories entre A x D(m) -modules et B x D(0) -modules (indexes). Nous deduisons de cette equivalence de categories la finitude de la dimension cohomologique des faisceaux D(m), lorsque le schema X est lisse sur un corps, et M est defini par un diviseur a croisements normaux.
2

Natural projectively equivariant quantizations/Quantifications naturelles projectivement équivariantes

Radoux, Fabian 24 November 2006 (has links)
One deals in this work with the existence and the uniqueness of natural projectively equivariant quantizations by means of the theory of Cartan connections. One shows that a natural projectively equivariant quantization exists for differential operators acting between $lambda$ and $mu$-densities if and only if the corresponding $sl(m+1,mathbb{R})$-equivariant quantization on $mathbb{R}^{m}$ exists. With this end in view, one writes the quantization by means of a formula in terms of the normal Cartan connection associated to the projective structure of a connection. One deduces next an explicit formula for the natural projectively equivariant quantization. One shows the non-uniqueness of such a quantization by means of the curvature of the normal Cartan connection. Finally, one shows the existence of natural and projectively equivariant quantizations for differential operators acting between sections of other natural fiber bundles transposing the method used in $mathbb{R}^{m}$ to analyse the existence of $sl(m+1,mathbb{R})$-equivariant quantizations, this method being linked to the Casimir operator./ On traite dans cet ouvrage de l'existence et de l'unicité de quantifications naturelles projectivement équivariantes au moyen de la théorie des connexions de Cartan. On démontre qu'une quantification naturelle projectivement équivariante existe pour des opérateurs différentiels agissant entre $lambda$ et $mu$-densités si et seulement si la quantification $sl(m+1,mathbb{R})$- équivariante correspondante sur $mathbb{R}^{m}$ existe. Pour cela, on exprime la quantification au moyen d'une formule en termes de la connexion de Cartan normale associée à la structure projective d'une connexion. On en déduit ensuite une formule explicite pour la quantification naturelle projectivement invariante. On démontre après la non-unicité d'une telle quantification par le biais de la courbure de la connexion de Cartan normale. Enfin, on démontre l'existence de quantifications naturelles projectivement équivariantes pour des opérateurs différentiels agissant entre sections d'autres fibrés naturels en transposant la méthode utilisée dans $mathbb{R}^{m}$ pour analyser l'existence de quantifications $sl(m+1,mathbb{R})$-équivariantes, méthode liée à l'opérateur de Casimir.

Page generated in 0.1234 seconds