• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generalisation de la theorie arithmetique des D-modules a la geometrie logarithmique

Montagnon, Claude 22 November 2002 (has links) (PDF)
L'objectif de cette these est d'etendre la theorie arithmetique des D-modules a la geometrie logarithmique. Nous commencons par definir les faisceaux d'operateurs differentiels de niveau m. Nous donnons une description de ces faisceaux D(m) et de leur structure en coordonnees locales dans le cas log-lisse, analogue a celle obtenue par Berthelot dans le cas non logarithmique. Nous etudions ensuite l'action du morphisme de Frobenius sur les modules sur ces faisceaux d'anneaux. Nous montrons tout d'abord que F* induit une elevation du niveau. Le theoreme de descente demontre par Berthelot pour les schemas usuel est par contre en defaut dans le cadre logarithmique. Nous reprenons donc les travaux de Lorenzon, qui associe a un log-schema une algebre canonique A, et nous etablissons une equivalence de categories entre A x D(m) -modules et B x D(0) -modules (indexes). Nous deduisons de cette equivalence de categories la finitude de la dimension cohomologique des faisceaux D(m), lorsque le schema X est lisse sur un corps, et M est defini par un diviseur a croisements normaux.

Page generated in 0.0661 seconds