1 |
Asymptotics and relative index on a cylinder with conical cross sectionHarutjunjan, Gohar, Schulze, Bert-Wolfgang January 2002 (has links)
We study pseudodifferential operators on a cylinder IR x B with cross section B that conical singularities. Configurations of that kind are the local model of cornere singularities with base spaces B. Operators A in our calculus are assumed to have symbols α which are meromorphic in the complex covariable with values in the space of all cone operators on B. In case α is dependent of the axial variable t ∈ IR, we show an explicit formula for solutions of the homogeneous equation. Each non-bjectivity point of the symbol in the complex plane corresponds to a finite-dimensional space of solutions. Moreover, we give a relative index formula.
|
2 |
Non-selfadjoint operator functionsTorshage, Axel January 2017 (has links)
Spectral properties of linear operators and operator functions can be used to analyze models in nature. When dispersion and damping are taken into account, the dependence of the spectral parameter is in general non-linear and the operators are not selfadjoint. In this thesis non-selfadjoint operator functions are studied and several methods for obtaining properties of unbounded non-selfadjoint operator functions are presented. Equivalence is used to characterize operator functions since two equivalent operators share many significant characteristics such as the spectrum and closeness. Methods of linearization and other types of equivalences are presented for a class of unbounded operator matrix functions. To study properties of the spectrum for non-selfadjoint operator functions, the numerical range is a powerful tool. The thesis introduces an optimal enclosure of the numerical range of a class of unbounded operator functions. The new enclosure can be computed explicitly, and it is investigated in detail. Many properties of the numerical range such as the number of components can be deduced from the enclosure. Furthermore, it is utilized to prove the existence of an infinite number of eigenvalues accumulating to specific points in the complex plane. Among the results are proofs of accumulation of eigenvalues to the singularities of a class of unbounded rational operator functions. The enclosure of the numerical range is also used to find optimal and computable estimates of the norm of resolvent and a corresponding enclosure of the ε-pseudospectrum.
|
3 |
Rational Krylov Methods for Operator FunctionsGüttel, Stefan 26 March 2010 (has links) (PDF)
We present a unified and self-contained treatment of rational Krylov methods for approximating the product of a function of a linear operator with a vector. With the help of general rational Krylov decompositions we reveal the connections between seemingly different approximation methods, such as the Rayleigh–Ritz or shift-and-invert method, and derive new methods, for example a restarted rational Krylov method and a related method based on rational interpolation in prescribed nodes. Various theorems known for polynomial Krylov spaces are generalized to the rational Krylov case. Computational issues, such as the computation of so-called matrix Rayleigh quotients or parallel variants of rational Arnoldi algorithms, are discussed. We also present novel estimates for the error arising from inexact linear system solves and the approximation error of the Rayleigh–Ritz method. Rational Krylov methods involve several parameters and we discuss their optimal choice by considering the underlying rational approximation problems. In particular, we present different classes of optimal parameters and collect formulas for the associated convergence rates. Often the parameters leading to best convergence rates are not optimal in terms of computation time required by the resulting rational Krylov method. We explain this observation and present new approaches for computing parameters that are preferable for computations. We give a heuristic explanation of superlinear convergence effects observed with the Rayleigh–Ritz method, utilizing a new theory of the convergence of rational Ritz values. All theoretical results are tested and illustrated by numerical examples. Numerous links to the historical and recent literature are included.
|
4 |
Rational Krylov Methods for Operator FunctionsGüttel, Stefan 12 March 2010 (has links)
We present a unified and self-contained treatment of rational Krylov methods for approximating the product of a function of a linear operator with a vector. With the help of general rational Krylov decompositions we reveal the connections between seemingly different approximation methods, such as the Rayleigh–Ritz or shift-and-invert method, and derive new methods, for example a restarted rational Krylov method and a related method based on rational interpolation in prescribed nodes. Various theorems known for polynomial Krylov spaces are generalized to the rational Krylov case. Computational issues, such as the computation of so-called matrix Rayleigh quotients or parallel variants of rational Arnoldi algorithms, are discussed. We also present novel estimates for the error arising from inexact linear system solves and the approximation error of the Rayleigh–Ritz method. Rational Krylov methods involve several parameters and we discuss their optimal choice by considering the underlying rational approximation problems. In particular, we present different classes of optimal parameters and collect formulas for the associated convergence rates. Often the parameters leading to best convergence rates are not optimal in terms of computation time required by the resulting rational Krylov method. We explain this observation and present new approaches for computing parameters that are preferable for computations. We give a heuristic explanation of superlinear convergence effects observed with the Rayleigh–Ritz method, utilizing a new theory of the convergence of rational Ritz values. All theoretical results are tested and illustrated by numerical examples. Numerous links to the historical and recent literature are included.
|
Page generated in 0.0877 seconds