• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards adaptive mesh refinement in Nek5000

Offermans, Nicolas January 2017 (has links)
The development of adaptive mesh refinement capabilities in the field of computational fluid dynamics is an essential tool for enabling the simulation of larger and more complex physical problems. While such techniques have been known for a long time, most simulations do not make use of them because of the lack of a robust implementation. In this work, we present recent progresses that have been made to develop adaptive mesh refinement features in Nek5000, a code based on the spectral element method. These developments are driven by the algorithmic challenges posed by future exascale supercomputers. First, we perform the study of the strong scaling of Nek5000 on three petascale machines in order to assess the scalability of the code and identify the current bottlenecks. It is found that strong scaling limit ranges between 5, 000 and 220, 000 degrees of freedom per core depending on the machine and the case. The need for synchronized and low latency communication for efficient computational fluid dynamics simulation is also confirmed. Additionally, we present how Hypre, a library for linear algebra, is used to develop a new and efficient code for performing the setup step required prior to the use of an algebraic multigrid solver for preconditioning the pressure equation in Nek5000. Finally, the main objective of this work is to develop new methods for estimating the error on a numerical solution of the Navier–Stokes equations via the resolution of an adjoint problem. These new estimators are compared to existing ones, which are based on the decay of the spectral coefficients. Then, the estimators are combined with newly implemented capabilities in Nek5000 for automatic grid refinement and adaptive mesh adaptation is carried out. The applications considered so far are steady and two-dimensional, namely the lid-driven cavity at Re = 7, 500 and the flow past a cylinder at Re = 40. The use of adaptive mesh refinement techniques makes mesh generation easier and it is shown that a similar accuracy as with a static mesh can be reached with a significant reduction in the number of degrees of freedom. / <p>QC 20171114</p>
2

Mathematical analysis and approximation of a multiscale elliptic-parabolic system

Richardson, Omar January 2018 (has links)
We study a two-scale coupled system consisting of a macroscopic elliptic equation and a microscopic parabolic equation. This system models the interplay between a gas and liquid close to equilibrium within a porous medium with distributed microstructures. We use formal homogenization arguments to derive the target system. We start by proving well-posedness and inverse estimates for the two-scale system. We follow up by proposing a Galerkin scheme which is continuous in time and discrete in space, for which we obtain well-posedness, a priori error estimates and convergence rates. Finally, we propose a numerical error reduction strategy by refining the grid based on residual error estimators.
3

Rational Krylov Methods for Operator Functions

Güttel, Stefan 26 March 2010 (has links) (PDF)
We present a unified and self-contained treatment of rational Krylov methods for approximating the product of a function of a linear operator with a vector. With the help of general rational Krylov decompositions we reveal the connections between seemingly different approximation methods, such as the Rayleigh–Ritz or shift-and-invert method, and derive new methods, for example a restarted rational Krylov method and a related method based on rational interpolation in prescribed nodes. Various theorems known for polynomial Krylov spaces are generalized to the rational Krylov case. Computational issues, such as the computation of so-called matrix Rayleigh quotients or parallel variants of rational Arnoldi algorithms, are discussed. We also present novel estimates for the error arising from inexact linear system solves and the approximation error of the Rayleigh–Ritz method. Rational Krylov methods involve several parameters and we discuss their optimal choice by considering the underlying rational approximation problems. In particular, we present different classes of optimal parameters and collect formulas for the associated convergence rates. Often the parameters leading to best convergence rates are not optimal in terms of computation time required by the resulting rational Krylov method. We explain this observation and present new approaches for computing parameters that are preferable for computations. We give a heuristic explanation of superlinear convergence effects observed with the Rayleigh–Ritz method, utilizing a new theory of the convergence of rational Ritz values. All theoretical results are tested and illustrated by numerical examples. Numerous links to the historical and recent literature are included.
4

Rational Krylov Methods for Operator Functions

Güttel, Stefan 12 March 2010 (has links)
We present a unified and self-contained treatment of rational Krylov methods for approximating the product of a function of a linear operator with a vector. With the help of general rational Krylov decompositions we reveal the connections between seemingly different approximation methods, such as the Rayleigh–Ritz or shift-and-invert method, and derive new methods, for example a restarted rational Krylov method and a related method based on rational interpolation in prescribed nodes. Various theorems known for polynomial Krylov spaces are generalized to the rational Krylov case. Computational issues, such as the computation of so-called matrix Rayleigh quotients or parallel variants of rational Arnoldi algorithms, are discussed. We also present novel estimates for the error arising from inexact linear system solves and the approximation error of the Rayleigh–Ritz method. Rational Krylov methods involve several parameters and we discuss their optimal choice by considering the underlying rational approximation problems. In particular, we present different classes of optimal parameters and collect formulas for the associated convergence rates. Often the parameters leading to best convergence rates are not optimal in terms of computation time required by the resulting rational Krylov method. We explain this observation and present new approaches for computing parameters that are preferable for computations. We give a heuristic explanation of superlinear convergence effects observed with the Rayleigh–Ritz method, utilizing a new theory of the convergence of rational Ritz values. All theoretical results are tested and illustrated by numerical examples. Numerous links to the historical and recent literature are included.
5

Modélisation et Simulation des Ecoulements Compressibles par la Méthode des Eléments Finis Galerkin Discontinus / Modeling and Simulation of Compressible Flows with Galerkin Finite Elements Methods

Gokpi, Kossivi 28 February 2013 (has links)
L’objectif de ce travail de thèse est de proposer la Méthodes des éléments finis de Galerkin discontinus (DGFEM) à la discrétisation des équations compressibles de Navier-Stokes. Plusieurs challenges font l’objet de ce travail. Le premier aspect a consisté à montrer l’ordre de convergence optimal de la méthode DGFEM en utilisant les polynômes d’interpolation d’ordre élevé. Le deuxième aspect concerne l’implémentation de méthodes de ‘‘shock-catpuring’’ comme les limiteurs de pentes et les méthodes de viscosité artificielle pour supprimer les oscillations numériques engendrées par l’ordre élevé (lorsque des polynômes d’interpolation de degré p>0 sont utilisés) dans les écoulements transsoniques et supersoniques. Ensuite nous avons implémenté des estimateurs d’erreur a posteriori et des procédures d ’adaptation de maillages qui permettent d’augmenter la précision de la solution et la vitesse de convergence afin d’obtenir un gain de temps considérable. Finalement, nous avons montré la capacité de la méthode DG à donner des résultats corrects à faibles nombres de Mach. Lorsque le nombre de Mach est petit pour les écoulements compressibles à la limite de l’incompressible, la solution souffre généralement de convergence et de précision. Pour pallier ce problème généralement on procède au préconditionnement qui modifie les équations d’Euler. Dans notre cas, les équations ne sont pas modifiées. Dans ce travail, nous montrons la précision et la robustesse de méthode DG proposée avec un schéma en temps implicite de second ordre et des conditions de bords adéquats. / The aim of this thesis is to deal with compressible Navier-Stokes flows discretized by Discontinuous Galerkin Finite Elements Methods. Several aspects has been considered. One is to show the optimal convergence of the DGFEM method when using high order polynomial. Second is to design shock-capturing methods such as slope limiters and artificial viscosity to suppress numerical oscillation occurring when p>0 schemes are used. Third aspect is to design an a posteriori error estimator for adaptive mesh refinement in order to optimize the mesh in the computational domain. And finally, we want to show the accuracy and the robustness of the DG method implemented when we reach very low mach numbers. Usually when simulating compressible flows at very low mach numbers at the limit of incompressible flows, there occurs many kind of problems such as accuracy and convergence of the solution. To be able to run low Mach number problems, there exists solution like preconditioning. This method usually modifies the Euler. Here the Euler equations are not modified and with a robust time scheme and good boundary conditions imposed one can have efficient and accurate results.

Page generated in 0.0927 seconds