• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 24
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 96
  • 96
  • 29
  • 28
  • 24
  • 21
  • 19
  • 17
  • 16
  • 16
  • 14
  • 13
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Fabrication and Measurement of Semiconductor Optical Amplifiers¡BFabry-Perot Laser and Ring Cavity Filter

Lin, Shin-Hung 09 July 2007 (has links)
In this thesis, we have established an optical measurement system to measure the device characteristics. We focus on the investigation of semiconductor optical amplifier, Fabry-Perot laser, and ring cavity filter. We used InP-based multiple quantum wells epitaxial wafer with modulation doping in the active layer. A 1.41 £gm symmetric InGaAlAs/InP quantum well structure is used to fabricate the optical waveguide ring resonator devices for the optical communication region at 1.55£gm wavelength. For the semiconductor optical amplifier and lasers, we designed two different types: Fabry-Perot Amplifier (FPA), and Traveling Wave Amplifier (TWA). The InGaAlAs-FPA structure has three lasing peaks at 1514 nm, 1528 nm, and 1544 nm. The InGaAlAs-TWA-a structure has only one peak at 1510 nm. The InGaAsP-TWA-b structure has a gross gain = 8.5 dB (wavelength = 1575 nm) at pumping current = 22 mA. We used Hakki-Paoli method and transparency current to calculate gain spectrum. For ring cavity filter, the optical spectrum has a FSR = 41.25 GHz.
12

All-fiber laser sources for fiber optical parametric amplifiers in 1 um

Li, Qin, 李沁 January 2011 (has links)
Fiber optical parametric amplifier (FOPA) is undoubtedly one of the most thriving research topics about optical amplifiers during the past decades. The high optical gain, arbitrary gain regions and wavelength conversion with large frequency shift make FOPA outstanding in diverse application areas like the high-speed all-optical communication, wavelength-tunable laser sources and optical imaging systems. Special fiber gain medium and proper pump source are two essential elements in an FOPA setup. As the research interest on FOPAs has recently gradually extended from the conventional 1.5-_m region to the shorter wavelength band at 1 μm, photonic crystal fibers (PCFs) act as the gain media by virtue of their customized dispersion curve and nonlinearity in this band. And the 1-mum laser sources incorporating ytterbium-doped fiber (YDF) as the gain medium have been investigated as well. We prefer all-fiber laser as the pump source not only because of its high output quality but also its compatibility with other fiber systems like FOPA. However, compared with 1.5-_m range, fiber lasers in 1-_m wavelength window have not been fully developed. Most of the laser sources reported in this wavelength range are not all-fiber base. For those few all-fiber reports, the tuning range of the pulsing wavelength is not wide enough, which might limit the performance of the FOPA. In this thesis, we have investigated tunable fiber lasers aiming at becoming the promising pump sources for 1-μm FOPAs. All-fiber lasers with different techniques and operation schemes based on the YDF have been discussed. Tunable ytterbium (Yb) fiber lasers with short pulsed output are important for pulsed-pumped FOPAs in 1 _m. Passive and active mode locking techniques are both commonly employed in short pulse generation. Passive mode-locking laser cavity usually works at the fundamental frequency of the cavity (?MHz) and has the potential to generate ultra-short pulse (? fs) due to its fast recovery time. On the other hand, active mode locking is more agile in terms of the repetition rate, which is synchronized with the external electrical signal. It can be as high as tens of GHz, which is useful for high-speed optical communication, and also can be as low as tens of MHz, which can benefit applications that require high peak power. For an all-fiber mode-locked laser based on YDF, the self-starting of the passive mode locking in 1 _m is more difficult than in 1.5 μm due to the large value of the normal material dispersion in optical fibers in this shorter wavelength range. In this thesis, we have focused on the active mode-locking cavity. Two schemes of actively mode-locked fiber lasers have be demonstrated. One is with a high repetition rate of about 10-GHz at around 1030 nm. The 30-nm tuning range is beneficial to the development of the wavelength-division multiplexing (WDM) technology in the newly developed 1-μm communication band. And on the basis of this scheme, another actively mode-locked fiber laser with a wider tuning range (almost 50 nm) have been achieved by optimizing the length of the YDF inside the cavity. Considering the applications like fiber sensing or spectroscopy where high peak power is more essential and also due to the limitation of our 980-nm pump power, the repetition rate has been lowered down to around 300 MHz in the second scheme. Tunable continuous-wave (CW) fiber lasers in 1 _m have also been discussed. For an all-fiber ring laser cavity, a stable CW output without mode-hopping can be achieved by selecting out single frequency. Various experimental configurations have been proposed for single-longitudinal-mode (SLM) oscillation. We have combined the multiple-ring cavity (MRC) and the saturable absorber in the same fiber laser cavity to facilitate the SLM generation in 1 _m. The tunable CW SLM fiber laser has the potential to build a sweeping source with instantaneous narrow linewidth for optical coherence tomography (OCT) in this range. It can also be utilized as the pump source for CW FOPAs, which is more immune from the walk-off effect between the pulsed pump and the signal, as long as the stimulated Brillouin scattering (SBS) has been suppressed properly. / published_or_final_version / Electrical and Electronic Engineering / Master / Master of Philosophy
13

Towards green optical fiber amplification: distributed parametric amplifier and its applications

Xu, Xing, 徐兴 January 2012 (has links)
With the data explosion brought about by smartphones and tables during the past few years, how to keep these ever-increasing data in a stable, fast and green transmission and exchange environment is among the top problems for researchers in the communication field. As the backbone for the modern communication network, optical fiber communication is currently playing a key role in this on-going technology revolution. The optical amplifier is one of the most powerful tools of the optical communication system to cope with the data explosion. Distributed parametric amplification (DPA), with its potential green characteristics, i.e. noiseless, high-speed response, high power efficiency and wavelength flexibility, provides a promising amplification solution for the next generation of optical communication systems. As on specific type of optical parametric amplification (OPA), DPA is based on the combination of self-phase modulation (SPM), cross-phase modulation (XPM) and four-wave mixing (FWM) effects. DPA’s main difference from OPA lies in the amplification medium. As DPA utilizes the most commonly adopted transmission fiber, i.e. single-mode fiber (SMF) and dispersion-shifted fiber (DSF), the signal transmission can thus be fulfilled simultaneously with the parametric amplification in the same optical fiber: DPA’s configuration also brings another green feature, pump-power recycling, which further enhances the power efficiency of the communication system. As the fundamental study on DPA, first the gain spectrum is investigated. Both single- and two-pump DPAs are presented experimentally for WDM signals. In these experiments, residual pump power recycling is enabled by a concentrated photovoltaic (CPV) cells, Moreover, through experimental comparison with another important distributed amplification technology, distributed Raman amplification (DRA), DPA’s advantages over DRA are demonstrated. When considering similar performance levels, DPA needs much lower pump power than DRA, which in return improves the system power efficiency. The performance of DPA cannot be judged unless it is assessed in more advanced application scenarios. Thus more advanced studies on DPA are conducted. The modulation format transparency is first presented with both phase (differential phase-shift keying (DPSK)) and intensity (on-off keying (OOK)) modulation formats, and our experimental results show the superiority of DPSK over traditional OOK. Furthermore, from the perspective of wavelength flexibility, we have demonstrated, for the first time to the best of our knowledge, a DPA system at the 1.3μm telecommunication window, which provides a potentially green amplification scheme at this transmission band. All these experiments, to a certain extent, certify the feasibility of DPA to become a green optical fiber amplifier. Finally, to demonstrate DPA’s compatibility within a more complicated communication system, we propose a power–efficient UWB/DPA system for the “last mile”. After experiments on photonic UWB pulse generation and the supporting DPA system, the hybrid UWB/DPA system is demonstrated with preliminary simulation results. My research efforts presented in this thesis all aim at the practical application of the DPA scheme into the next-generation of green communication systems. If further armed with the phase-sensitive configuration, DPA’s potential as a green amplifier will be further augmented. / published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
14

Analysis of semiconductor optical amplifiers in VCSEL based wavelength division multiplexing communication /

Harris, Mitchell T. January 2007 (has links)
Thesis (M.S.)--University of Nevada, Reno, 2007. / "May, 2007." Includes bibliographical references (leaves 82-83). Online version available on the World Wide Web. Library also has microfilm. Ann Arbor, Mich. : ProQuest Information and Learning Company, [2007]. 1 microfilm reel ; 35 mm.
15

Analysis and simulation of the Kerr effect in long haul in-line fiber amplifier transmission systems /

Ma, Xiaobing, January 1994 (has links)
Thesis (Ph. D.)--Virginia Polytechnic Institute and State University, 1994. / Vita. Abstract. Includes bibliographical references (leaves 159-163). Also available via the Internet.
16

Ultrafast organic lasers and solid-state amplifiers /

Goossens, Mark. January 2007 (has links)
Thesis (Ph.D.) - University of St Andrews, April 2007.
17

The effects of noise in CATV distribution networks with star couplers and fiber amplifiers /

Chen, David Yong, January 1994 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1994. / Vita. Abstract. Includes bibliographical references (leaves 84-86). Also available via the Internet.
18

Experimental investigation of high-power continuous-wave fiber optical parametric amplifiers and oscillators

Malik, Rohit January 2010 (has links)
Fiber optical parametric amplifiers (OPAs) are based on a highly-efficient four-wave mixing process. Their capability to give very high gain and large bandwidths have made them an attractive candidate for providing higher bandwidths for future telecommunication systems, such as wavelength-division multiplexed (WDM) photonics networks. In dynamic photonic networks a where number of channels are dropped and/or added all the time, the OPA gain for the other channels is affected. In this thesis we employed a well-known gain control technique, all-optical gain clamping (AOGC), and reduced the gain variation of fiber OPAs below 0.5 dB, under varying input conditions. We also showed an improvement in power penalties o at the bit-error rate of 10-8, from 2.5 dB to 0.5 dB for on/off keying modulation. We also investigated fiber optical parametric oscillators (OPOs). Using fiber OPAs as gain medium we realized two different continuous-wave (CW) OPOs, centred at 1561 nm and 1593 nm. One gave us watt-level output power from 1600 nm to 1670 nm, with overall tuning range of 211 nm. The output linewidth of signal and idler was measured to be 0.08 nm and 0.15 nm respectively. The OPO centred at 1593 nm gave us a record tuning range of 254 nm, and with 3 dB output coupling fraction, it gave us large output powers (20-27 dBm) from 1610 nm to 1720 nm. Using a large seed generated by a watt-level fiber OPO in the U-band, and using 3 W of CW pump source in the C-band for Raman amplification, we generated 3 W of CW output power. This gave us nearly 100% conversion efficiency. Launching a high-power CW pump with narrow linewidth into a fiber makes stimulated Brillouin scattering (SBS) a major problem. We investigated an SBS suppressor, based on a common technique of phase dithering of the pump to suppress the SBS. We compared a multitone modulation technique to modulation with a pseudo-random bit sequence (PRBS), and we showed that it can increase the SBS threshold by 4.18 dB, and is less expensive to implement.
19

Gain equalization of erbium doped fibre amplifiers with tuneable long-period gratings

Nhlapo, Thabiso J. 26 February 2009 (has links)
M.Ing. / This thesis is about the gain equalization of erbium doped fibre amplifiers (EDFA), which is a key technology for enabling wavelength-division multiplexed (WDM) optical communication systems. In order to flatten dynamically the EDFA gain spectrum, a tuneable long-period grating filter was demonstrated. Long-period gratings were fabricated by using a KrF excimer laser combined with the metal amplitude mask technique. The transmission spectrum characteristic of the long- period grating was simulated theoretically by the coupled-mode theory. The coupling between the core and cladding modes of the long-period grating was investigated both experimentally and theoretically. The EDFA was constructed by using the forward pumping configuration consisting of pump laser source, WDM couplers, an optical isolator, and the erbium-doped fibre. The EDFA was characterized theoretically and experimentally for WDM applications. The tuneable long-period grating filter design is based on the tuneable coupler that uses the Mach-Zehnder interferometer configuration. The tuneable filter was demonstrated by equalizing the EDFA gain spectrum and the amplified spontaneous emission (ASE) source. The main advantage of this filter compared to other optical filters is its tuneability of the attenuation over a wide range of pump power.
20

Towards an integrated optic tuneable gain equalizer for erbium-doped fibre amplifiers

Botha, Roelene 26 February 2009 (has links)
M.Ing. / Long distance optical communication systems experience a large degree of attenuation due to fibre losses, necessitating signal amplification. Erbium Doped Fibre Amplifiers (EDFAs) have found widespread use as all-fibre optical amplifiers, but exhibit unequal amplification of different wavelengths. Since the gain spectrum is signal-power and pump-power dependent, each EDFA spectrum may differ considerably, and a tuneable gain equalizer is required. A tuneable long-period grating (LPG) can be implemented as a gain equalizer for EDFAs. This dissertation deals with the design of an integrated optic version of the tuneable equalizing filter. The various components of which the device comprises, including optical couplers, Mach-Zehnder interferometers and an LPG, are investigated. The integrated optics designs of these components are then done using the BeamPROP software package. The use and optical properties of germania-doped silica as photosensitive waveguide material is studied. The production of the films for the gain equalizer, using electron-cyclotron resonance plasma-enhanced chemical vapour deposition, is discussed. Characterization of these films was carried out using spectroscopic ellipsometry and infrared spectroscopy. The optical constants, thickness, germania content and hydroxyl absorption was calculated using these measurements.

Page generated in 0.1412 seconds