• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 15
  • 4
  • 1
  • Tagged with
  • 82
  • 82
  • 44
  • 27
  • 23
  • 22
  • 21
  • 16
  • 15
  • 15
  • 15
  • 12
  • 12
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Optimal control of a reactive stagnation point flow on a catalytic plate

Grosshans, Oliver. January 2001 (has links) (PDF)
Heidelberg, University, Diss., 2001.
12

Sensitivitätsanalyse und Echtzeit-Steuerung optimaler Steuerprozesse mit Zustandsbeschränkungen sowie für Multiprozess- und Impulsprobleme

Augustin, Dirk. Unknown Date (has links)
Universiẗat, Diss., 2002--Münster (Westfalen). / Dateien im PS-Format.
13

A sequential quadratic Hamiltonian scheme for solving optimal control problems with non-smooth cost functionals / Ein sequentielles quadratisches Hamilton Schema um Optimalsteuerprobleme mit nicht-glatten Kostenfunktionalen zu lösen

Breitenbach, Tim January 2019 (has links) (PDF)
This thesis deals with a new so-called sequential quadratic Hamiltonian (SQH) iterative scheme to solve optimal control problems with differential models and cost functionals ranging from smooth to discontinuous and non-convex. This scheme is based on the Pontryagin maximum principle (PMP) that provides necessary optimality conditions for an optimal solution. In this framework, a Hamiltonian function is defined that attains its minimum pointwise at the optimal solution of the corresponding optimal control problem. In the SQH scheme, this Hamiltonian function is augmented by a quadratic penalty term consisting of the current control function and the control function from the previous iteration. The heart of the SQH scheme is to minimize this augmented Hamiltonian function pointwise in order to determine a control update. Since the PMP does not require any differ- entiability with respect to the control argument, the SQH scheme can be used to solve optimal control problems with both smooth and non-convex or even discontinuous cost functionals. The main achievement of the thesis is the formulation of a robust and efficient SQH scheme and a framework in which the convergence analysis of the SQH scheme can be carried out. In this framework, convergence of the scheme means that the calculated solution fulfills the PMP condition. The governing differential models of the considered optimal control problems are ordinary differential equations (ODEs) and partial differential equations (PDEs). In the PDE case, elliptic and parabolic equations as well as the Fokker-Planck (FP) equation are considered. For both the ODE and the PDE cases, assumptions are formulated for which it can be proved that a solution to an optimal control problem has to fulfill the PMP. The obtained results are essential for the discussion of the convergence analysis of the SQH scheme. This analysis has two parts. The first one is the well-posedness of the scheme which means that all steps of the scheme can be carried out and provide a result in finite time. The second part part is the PMP consistency of the solution. This means that the solution of the SQH scheme fulfills the PMP conditions. In the ODE case, the following results are obtained that state well-posedness of the SQH scheme and the PMP consistency of the corresponding solution. Lemma 7 states the existence of a pointwise minimum of the augmented Hamiltonian. Lemma 11 proves the existence of a weight of the quadratic penalty term such that the minimization of the corresponding augmented Hamiltonian results in a control updated that reduces the value of the cost functional. Lemma 12 states that the SQH scheme stops if an iterate is PMP optimal. Theorem 13 proves the cost functional reducing properties of the SQH control updates. The main result is given in Theorem 14, which states the pointwise convergence of the SQH scheme towards a PMP consistent solution. In this ODE framework, the SQH method is applied to two optimal control problems. The first one is an optimal quantum control problem where it is shown that the SQH method converges much faster to an optimal solution than a globalized Newton method. The second optimal control problem is an optimal tumor treatment problem with a system of coupled highly non-linear state equations that describe the tumor growth. It is shown that the framework in which the convergence of the SQH scheme is proved is applicable for this highly non-linear case. Next, the case of PDE control problems is considered. First a general framework is discussed in which a solution to the corresponding optimal control problem fulfills the PMP conditions. In this case, many theoretical estimates are presented in Theorem 59 and Theorem 64 to prove in particular the essential boundedness of the state and adjoint variables. The steps for the convergence analysis of the SQH scheme are analogous to that of the ODE case and result in Theorem 27 that states the PMP consistency of the solution obtained with the SQH scheme. This framework is applied to different elliptic and parabolic optimal control problems, including linear and bilinear control mechanisms, as well as non-linear state equations. Moreover, the SQH method is discussed for solving a state-constrained optimal control problem in an augmented formulation. In this case, it is shown in Theorem 30 that for increasing the weight of the augmentation term, which penalizes the violation of the state constraint, the measure of this state constraint violation by the corresponding solution converges to zero. Furthermore, an optimal control problem with a non-smooth L\(^1\)-tracking term and a non-smooth state equation is investigated. For this purpose, an adjoint equation is defined and the SQH method is used to solve the corresponding optimal control problem. The final part of this thesis is devoted to a class of FP models related to specific stochastic processes. The discussion starts with a focus on random walks where also jumps are included. This framework allows a derivation of a discrete FP model corresponding to a continuous FP model with jumps and boundary conditions ranging from absorbing to totally reflecting. This discussion allows the consideration of the drift-control resulting from an anisotropic probability of the steps of the random walk. Thereafter, in the PMP framework, two drift-diffusion processes and the corresponding FP models with two different control strategies for an optimal control problem with an expectation functional are considered. In the first strategy, the controls depend on time and in the second one, the controls depend on space and time. In both cases a solution to the corresponding optimal control problem is characterized with the PMP conditions, stated in Theorem 48 and Theorem 49. The well-posedness of the SQH scheme is shown in both cases and further conditions are discussed that ensure the convergence of the SQH scheme to a PMP consistent solution. The case of a space and time dependent control strategy results in a special structure of the corresponding PMP conditions that is exploited in another solution method, the so-called direct Hamiltonian (DH) method. / Diese Dissertation handelt von einem neuen so genannten sequentiellen quadratischen Hamilton (SQH) iterativen Schema um Optimalsteuerungsprobleme mit Differentialmodellen und Kostenfunktionalen, die von glatt bis zu unstetig und nicht-konvex reichen, zu lösen. Dieses Schema basiert auf dem Pontryagin Maximumprinzip (PMP), welches notwendige Optimalitätsbedingungen für eine optimale Lösung zur Verfügung stellt. In diesem Rahmen wird eine Hamiltonfunktion definiert, die ihr Minimum punktweise an der optimalen Lösung des entsprechenden Optimalsteuerungsproblems annimmt. In diesem SQH Schema wird diese Hamiltonfunktion durch einen quadratischen Strafterm erweitert, der aus der aktuellen Steuerungsfunktion und der Steuerungsfunktion aus der vorherigen Iteration besteht. Das Herzstück des SQH Schemas ist die punktweise Minimierung dieser erweiterten Hamiltonfunktion um eine Aktualisierung der Steuerungsfunktion zu bestimmen. Da das PMP keine Differenzierbarkeit in Bezug auf das Steuerungsfunktionsargument verlangt, kann das SQH Schema dazu benutzt werden, Optimalsteuerungsprobleme mit sowohl glatten als auch nicht-konvexen oder sogar unstetigen Kostenfunktionalen zu lösen. Das Hauptergebnis dieser Dissertation ist die Formulierung eines robusten und effizienten SQH Schemas und eines Rahmens, in dem die Konvergenzanalyse des SQH Schemas ausgeführt werden kann. In diesem Rahmen bedeutet Konvergenz des Schemas, dass die berechnete Lösung die PMP Bedingung erfüllt. Die steuernden Differentialmodelle der betrachteten Optimalsteuerungsprobleme sind gewöhnliche Differentialgleichungen (ODEs) und partielle Differentialgleichungen (PDEs). Im PDE Fall werden elliptische und parabolische Gleichungen, sowie die Fokker-Planck (FP) Gleichung betrachtet. Für sowohl den ODE als auch den PDE Fall werden Annahmen formuliert, für die bewiesen werden kann, dass eine Lösung eines Optimalsteuerungsproblems das PMP erfüllen muss. Die erhaltenen Resultate sind für die Diskussion der Konvergenzanalyse des SQH Schemas essentiell. Diese Analyse hat zwei Teile. Der erste ist die Wohlgestelltheit des Schemas, was bedeutet, dass alle Schritte des Schemas ausgeführt werden können und ein Ergebnis in endlicher Zeit liefern. Der zweite Teil ist die PMP Konsistenz der Lösung. Das bedeutet, dass die Lösung des SQH Schemas die PMP Bedingungen erfüllt. Im ODE Fall werden die folgenden Resultate erhalten, die die Wohlgestelltheit des Schemas und die PMP Konsistenz der entsprechenden Lösung darlegen. Lemma 7 legt die Existenz eines punktweisen Minimums der erweiterten Hamiltonfunktion dar. Lemma 11 beweist die Existenz eines Gewichtes des quadratischen Strafterms, sodass die Minimierung der entsprechenden erweiterten Hamiltonfunktion zu einer Kontrollaktualisierung führt, die den Wert des Kostenfunktionals verringert. Lemma 12 legt dar, dass das SQH Schema stehen bleibt falls eine Iterierte PMP optimal ist. Satz 13 beweist die Kostenfunktional verringernden Eigenschaften der SQH Steuerungsfunktionsaktualisierung. Das Hauptresultat ist in Satz 14 gegeben, welches die punktweise Konvergenz des SQH Schemas gegen eine PMP konsistente Lösung darlegt. Das SQH-Verfahren wird in diesem ODE Rahmen auf zwei Optimalsteuerungsprobleme angewendet. Das erste ist ein optimales Quantensteuerungsproblem, bei dem gezeigt wird, dass das SQH-Verfahren viel schneller zu einer optimalen Lösung konvergiert als ein globalisiertes Newton-Verfahren. Das zweite Optimalsteuerungsproblem ist ein optimales Tumorbehandlungsproblem mit einem System gekoppelter hochgradig nicht-linearer Zustandsgleichungen, die das Tumorwachstum beschreiben. Es wird gezeigt, dass der Rahmen, in dem die Konvergenz des SQH Schemas bewiesen wird, auf diesen hochgradig nicht-linearen Fall anwendbar ist. Als nächstes wird der Fall von PDE Optimalsteuerungsprobleme betrachtet. Zunächst wird ein allgemeiner Rahmen diskutiert, in dem eine Lösung des entsprechenden Optimalsteuerungsproblem die PMP Bedingungen erfüllt. In diesem Fall werden viele theoretische Abschätzungen in Satz 59 und Satz 64 bewiesen, die insbesondere die essentielle Beschränktheit von Zustands- und Adjungiertenvariablen beweisen. Die Schritte für die Konvergenzanalyse des SQH Schemas sind analog zu denen des ODE Falls und führen zu Satz 27, der die PMP Konsistenz der Lösung, erhalten durch das SQH Schemas, darlegt. Dieser Rahmen wird auf verschiedene elliptische und parabolische Optimalsteuerungsprobleme angewendet, die lineare und bilineare Steuerungsmechanismen beinhalten, genauso wie nicht-lineare Zustandsgleichungen. Darüber hinaus wird das SQH-Verfahren zum Lösen eines zustandsbeschränkten Optimalsteuerungsproblems in einer erweiterten Formulieren diskutiert. Es wird in Satz 30 gezeigt, dass wenn man das Gewicht des Erweiterungsterms, der die Verletzung der Zustandsbeschränkung bestraft, erhöht, das Maß dieser Zustandsbeschränkungsverletzung durch die entsprechende Lösung gegen null konvergiert. Weiterhin wird ein Optimalsteuerungsproblem mit einem nicht-glatten L\(^1\)-Zielverfolgungsterm und einer nicht-glatten Zustandsgleichung untersucht. Für diesen Zweck wird eine adjungierte Gleichung definiert und das SQHVerfahren wird benutzt um das entsprechende Optimalsteuerungsproblem zu lösen. Der letzte Teil dieser Dissertation ist einer Klasse von FP Modellen gewidmet, die auf bestimmte stochastische Prozesse bezogen sind. Die Diskussion beginnt mit dem Fokus auf Random Walks bei dem auch Sprünge mit enthalten sind. Dieser Rahmen erlaubt die Herleitung eines diskreten FP Modells, das einem kontinuierlichen FP Modell mit Sprüngen und Randbedingungen entspricht, die sich zwischen absorbierend bis komplett reflektierend bewegen. Diese Diskussion erlaubt die Betrachtung der Driftsteuerung, die aus einer anisotropen Wahrscheinlichkeit für die Schritte des Random Walks resultiert. Danach werden zwei Drift-Diffusionsprozesse und die entsprechenden FP Modelle mit zwei verschiedenen Steuerungsstrategien für ein Optimalsteuerungsproblem mit Erwartungswertfunktional betrachtet. In der ersten Strategie hängen die Steuerungsfunktionen von der Zeit ab und in der zweiten hängen die Steuerungsfunktionen von Ort und Zeit ab. In beiden Fällen wird eine Lösung zum entsprechendem Optimalsteuerungsproblem mit den PMP Bedingungen charakterisiert, dargestellt in Satz 48 und Satz 49. Die Wohlgestelltheit des SQH Schemas ist in beiden Fällen gezeigt und weitere Bedingungen, die die Konvergenz des SQH Schemas zu einer PMP konsistenten Lösung sicherstellen, werden diskutiert. Der Fall einer Ort und Zeit abhängigen Steuerungsstrategie führt auf eine spezielle Struktur der entsprechenden PMP Bedingungen, die in einem weiteren Lösungsverfahren ausgenutzt werden, dem sogenannten direkten Hamiltonfunktionsverfahren (DH).
14

On the control through leadership of multi-agent systems / Die Steuerung durch den Hauptagent von Multi-Agenten -Systemen

Wongkaew, Suttida January 2015 (has links) (PDF)
The investigation of interacting multi-agent models is a new field of mathematical research with application to the study of behavior in groups of animals or community of people. One interesting feature of multi-agent systems is collective behavior. From the mathematical point of view, one of the challenging issues considering with these dynamical models is development of control mechanisms that are able to influence the time evolution of these systems. In this thesis, we focus on the study of controllability, stabilization and optimal control problems for multi-agent systems considering three models as follows: The first one is the Hegselmann Krause opinion formation (HK) model. The HK dynamics describes how individuals' opinions are changed by the interaction with others taking place in a bounded domain of confidence. The study of this model focuses on determining feedback controls in order to drive the agents' opinions to reach a desired agreement. The second model is the Heider social balance (HB) model. The HB dynamics explains the evolution of relationships in a social network. One purpose of studying this system is the construction of control function in oder to steer the relationship to reach a friendship state. The third model that we discuss is a flocking model describing collective motion observed in biological systems. The flocking model under consideration includes self-propelling, friction, attraction, repulsion, and alignment features. We investigate a control for steering the flocking system to track a desired trajectory. Common to all these systems is our strategy to add a leader agent that interacts with all other members of the system and includes the control mechanism. Our control through leadership approach is developed using classical theoretical control methods and a model predictive control (MPC) scheme. To apply the former method, for each model the stability of the corresponding linearized system near consensus is investigated. Further, local controllability is examined. However, only in the Hegselmann-Krause opinion formation model, the feedback control is determined in order to steer agents' opinions to globally converge to a desired agreement. The MPC approach is an optimal control strategy based on numerical optimization. To apply the MPC scheme, optimal control problems for each model are formulated where the objective functions are different depending on the desired objective of the problem. The first-oder necessary optimality conditions for each problem are presented. Moreover for the numerical treatment, a sequence of open-loop discrete optimality systems is solved by accurate Runge-Kutta schemes, and in the optimization procedure, a nonlinear conjugate gradient solver is implemented. Finally, numerical experiments are performed to investigate the properties of the multi-agent models and demonstrate the ability of the proposed control strategies to drive multi-agent systems to attain a desired consensus and to track a given trajectory. / Die Untersuchung von interagierende Multiagent-Modellen ist ein neues mathematisches Forschungsfeld, das sich mit dem Gruppenverhalten von Tieren beziehungsweise Sozialverhalten von Menschen. Eine interessante Eigenschaft der Multiagentensysteme ist kollektives Verhalten. Eine der herausfordernden Themen, die sich mit diesen dynamischen Modellen befassen, ist in der mathematischen Sicht eine Entwicklung der Regelungsmechanismen, die die Zeitevolution dieser Systemen beeinflussen können. In der Doktorarbeit fokussieren wir uns hauptsächlich auf die Studie von Problemen der Steuerbarkeit, Stabilität und optimalen Regelung für Multiagentensysteme anhand drei Modellen wie folgt: Das erste ist die Hegselmann- Krause opinion formation Modell. Die HK-Dynamik beschreibt die Änderung der Meinungen von einzelnen Personen aufgrund der Interaktionen mit den Anderen. Die Studie dieses Model fokussiert auf bestimmte Regelungen, um die Meinungen der Agenten zu betreiben, damit eine gewünschte Zustimmung erreicht wird. Das zweite Model ist das Heider social balance (HB) Modell. Die HB-Dynamik beschreibt die Evolution von Beziehungen in einem sozialen Netzwerk. Ein Ziel der Untersuchung dieses Systems ist die Konstruktion der Regelungsfunktion um die Beziehungen zu steuern, damit eine Freundschaft erreicht wird. Das dritte Modell ist ein Schar-Modell, das in biologischen Systemen beobachteten kollektive Bewegung beschreibt. Das Schar-Model unter Berücksichtigung beinhaltet Selbstantrieb, Friktion, Attraktion Repulsion und Anpassungsfähigkeiten. Wir untersuchen einen Regler für die Steuerung des Schar-Systems, um eine gewünschte Trajektorie zu verfolgen. Üblich wie alle dieser Systeme soll laut unsere Strategie ein Hauptagent, der sich mit alle anderen Mitgliedern des Systems interagieren, hinzugefügt werden und das Regelungsmechanismus inkludiert werden. Unserer Regelung anhand dem Vorgehen mit Führungsverhalten ist unter Verwendung von klassischen theoretischen Regelungsmethode und ein Schema der modellpr ädiktiven Regelung entwickelt. Zur Ausführung der genannten Methode wird für jedes Modell die Stabilität der korrespondierenden Linearsystem in der Nähe von Konsensus untersucht. Ferner wird die lokale Regelbarkeit geprüft. Nur in dem Hegselmann-Krause opinion formation Modell. Der Regler wird so bestimmt, dass die Meinungen der Agenten gesteuert werden können. Dadurch konvergiert es global zu eine gewünschten Zustimmung. Die MPC-Vorgehensweise ist eine optimale Regelung Strategie, die auf numerische Optimierung basiert. Zu Verwendung des MPC-Shema werden die optimalen Regelungsproblemen für jedes Modell formuliert, wo sich die objektive Funktionen in Abhängigkeit von den gewünschten objective des Problems unterscheidet. Die erforderliche Optimalitätsbedingungen erster Ordnung für jedes Problem sind präsentiert. Auÿerdem für die numerische Prozess, eine Sequenz von offenen diskreten Optimalitätssystemen ist nach dem expliziten Runge-Kutta Schema gelöst. In dem Optimierungsverfahren ist ein nicht linear konjugierter Gradientlöser umgesetzt. Schlieÿlich sind numerische Experimenten in der Lage, die Eigenschaften der Multiagent-Modellen zu untersuchen und die Fähigkeiten der gezielten Regelstrategie zu beweisen. Die Strategie nutzt zu betreiben Multiagentensysteme, um einen gewünschten Konsensus zu erreichen und eine gegebene Trajektorie zu verfolgen.
15

Dynamische Modelle zur Theorie der Regulierung /

Bobzin, Gudrun. January 2002 (has links)
Universiẗat, Diss., 2001--Siegen.
16

Effiziente reduzierte Newton-ähnliche Verfahren zur Behandlung hochdimensionaler strukturierter Optimierungsprobleme mit Anwendung bei biologischen und chemischen Prozessen

Schäfer, Andreas A. S. January 1900 (has links) (PDF)
Heidelberg, Universiẗat, Diss., 2004.
17

The control reduced interior point method : a function space oriented algorithmic approach /

Schiela, Anton. January 2006 (has links)
Zugl.: Berlin, Freie Universiẗat, Diss., 2006.
18

Adaptive Polarization Pulse Shaping and Modeling of Light-Matter Interactions with Neural Networks / Adaptive Polarisationspulsformung und Modellierung von Licht-Materie-Wechselwirkungen mit Neuronalen Netzwerken

Selle, Reimer Andreas January 2007 (has links) (PDF)
The technique of ultrafast polarization shaping is applied to a model quantum system, the potassium dimer. The polarization dependence of the multiphoton ionization dynamics in this molecule is first investigated in pump–probe experiments, and it is then more generally addressed and exploited in an adaptive quantum control experiment utilizing near–IR polarization–shaped laser pulses. The extension of these polarization shaping techniques to the UV spectral range is presented, and methods for the generation and characterization of polarization–shaped laser pulses in the UV are introduced. Systematic scans of double–pulse sequences are introduced for the investigation and interpretation of control mechanisms. This concept is first introduced and illustrated for an optical demonstration experiment, and it is then applied for the analysis of the intrapulse dumping mechanism that is observed in the excitation of a large dye molecule in solution with ultrashort laser pulses. Shaped laser pulses are employed as a means for obtaining copious amounts of data on light–matter interactions. Neural networks are introduced as a novel tool for generating computer–based models for these interactions from the accumulated data. The viability of this approach is first tested for second harmonic generation (SHG) and molecular fluorescence processes. Neural networks are then utilized for modeling the far more complex coherent strong–field dynamics of potassium atoms. / Die Technik der ultraschnellen Polarisationspulsformung wird auf ein Modell-Quantensystem, das Kalium-Dimer angewandt. Die Polarisationsabhängigkeit der Ionisationsdynamik wird zunächst mit Anrege-Abfrage-Experimenten untersucht, und anschließend in einem adaptiven Optimierungsexperiment mit polarisationsgeformten Nahinfrarot-Laserpulsen ausgenutzt. Die Polarisationspulsformungstechnik wird auf den ultravioletten Spektralbereich erweitert, und es werden Methoden zur Erzeugung und Charakterisierung von polarisationsgeformten UV-Pulsen vorgestellt. Systematische Abtastungen von Doppelpulsfolgen werden für die Untersuchung und Interpretation von Kontrollmechanismen vorgestellt. Geformte Laserpulse werden verwendet, um umfangreiche Daten über die Licht-Materie Wechselwirkung zu sammeln. Neuronale Netzwerke werden erstmals dazu verwendet, um aus den Daten numerische Modelle für die Wechselwirkung von Licht und Materie zu erzeugen. Die Durchführbarkeit dieses Ansatzes wird zunächst an SHG und Fluoreszenzprozessen demonstriert. Neuronale Netzwerke werden desweiteren dazu verwendet, um die weitaus komplexere Dynamik von Kaliumatomen in starken elektromagnetischen Feldern zu modellieren.
19

Theoretical and numerical analysis of Fokker-Planck optimal control problems for jump-diffusion processes / Theoretische und numerische Analyse von Fokker-Planck Optimalsteuerungsproblemen von Sprung-Diffusions-Prozessen

Gaviraghi, Beatrice January 2017 (has links) (PDF)
The topic of this thesis is the theoretical and numerical analysis of optimal control problems, whose differential constraints are given by Fokker-Planck models related to jump-diffusion processes. We tackle the issue of controlling a stochastic process by formulating a deterministic optimization problem. The key idea of our approach is to focus on the probability density function of the process, whose time evolution is modeled by the Fokker-Planck equation. Our control framework is advantageous since it allows to model the action of the control over the entire range of the process, whose statistics are characterized by the shape of its probability density function. We first investigate jump-diffusion processes, illustrating their main properties. We define stochastic initial-value problems and present results on the existence and uniqueness of their solutions. We then discuss how numerical solutions of stochastic problems are computed, focusing on the Euler-Maruyama method. We put our attention to jump-diffusion models with time- and space-dependent coefficients and jumps given by a compound Poisson process. We derive the related Fokker-Planck equations, which take the form of partial integro-differential equations. Their differential term is governed by a parabolic operator, while the nonlocal integral operator is due to the presence of the jumps. The derivation is carried out in two cases. On the one hand, we consider a process with unbounded range. On the other hand, we confine the dynamic of the sample paths to a bounded domain, and thus the behavior of the process in proximity of the boundaries has to be specified. Throughout this thesis, we set the barriers of the domain to be reflecting. The Fokker-Planck equation, endowed with initial and boundary conditions, gives rise to Fokker-Planck problems. Their solvability is discussed in suitable functional spaces. The properties of their solutions are examined, namely their regularity, positivity and probability mass conservation. Since closed-form solutions to Fokker-Planck problems are usually not available, one has to resort to numerical methods. The first main achievement of this thesis is the definition and analysis of conservative and positive-preserving numerical methods for Fokker-Planck problems. Our SIMEX1 and SIMEX2 (Splitting-Implicit-Explicit) schemes are defined within the framework given by the method of lines. The differential operator is discretized by a finite volume scheme given by the Chang-Cooper method, while the integral operator is approximated by a mid-point rule. This leads to a large system of ordinary differential equations, that we approximate with the Strang-Marchuk splitting method. This technique decomposes the original problem in a sequence of different subproblems with simpler structure, which are separately solved and linked to each other through initial conditions and final solutions. After performing the splitting step, we carry out the time integration with first- and second-order time-differencing methods. These steps give rise to the SIMEX1 and SIMEX2 methods, respectively. A full convergence and stability analysis of our schemes is included. Moreover, we are able to prove that the positivity and the mass conservation of the solution to Fokker-Planck problems are satisfied at the discrete level by the numerical solutions computed with the SIMEX schemes. The second main achievement of this thesis is the theoretical analysis and the numerical solution of optimal control problems governed by Fokker-Planck models. The field of optimal control deals with finding control functions in such a way that given cost functionals are minimized. Our framework aims at the minimization of the difference between a known sequence of values and the first moment of a jump-diffusion process; therefore, this formulation can also be considered as a parameter estimation problem for stochastic processes. Two cases are discussed, in which the form of the cost functional is continuous-in-time and discrete-in-time, respectively. The control variable enters the state equation as a coefficient of the Fokker-Planck partial integro-differential operator. We also include in the cost functional a $L^1$-penalization term, which enhances the sparsity of the solution. Therefore, the resulting optimization problem is nonconvex and nonsmooth. We derive the first-order optimality systems satisfied by the optimal solution. The computation of the optimal solution is carried out by means of proximal iterative schemes in an infinite-dimensional framework. / Die vorliegende Arbeit beschäftigt sich mit der theoretischen und numerischen Analyse von Optimalsteuerungsproblemen, deren Nebenbedingungen die Fokker-Planck-Gleichungen von Sprung-Diffusions-Prozessen sind. Unsere Strategie baut auf der Formulierung eines deterministischen Problems auf, um einen stochastischen Prozess zu steuern. Der Ausgangspunkt ist, die Wahrscheinlichkeitsdichtefunktion des Prozesses zu betrachten, deren zeitliche Entwicklung durch die Fokker-Planck-Gleichung modelliert wird. Dieser Ansatz ist vorteilhaft, da er es ermöglicht, den gesamten Bereich des Prozesses durch die Wirkung der Steuerung zu beeinflussen. Zuerst beschäftigen wir uns mit Sprung-Diffusions-Prozessen. Wir definieren Ausgangswertprobleme, die durch stochastische Differentialgleichungen beschrieben werden, und präsentieren Ergebnisse zur Existenz und Eindeutigkeit ihrer Lösungen. Danach diskutieren wir, wie numerische Lösungen stochastischer Probleme berechnet werden, wobei wir uns auf die Euler-Maruyama-Methode konzentrieren. Wir wenden unsere Aufmerksamkeit auf Sprung-Diffusions-Modelle mit zeit- und raumabhängigen Koeffizienten und Sprüngen, die durch einen zusammengesetzten Poisson-Prozess modelliert sind. Wir leiten die zugehörigen Fokker-Planck-Glei-chungen her, die die Form von partiellen Integro-Differentialgleichungen haben. Ihr Differentialterm wird durch einen parabolischen Operator beschrieben, während der nichtlokale Integraloperator Spr\"{u}nge modelliert. Die Ableitung wird auf zwei unterschiedlichen Arten ausgef\"{u}hrt, je nachdem, ob wir einen Prozess mit unbegrenztem oder beschränktem Bereich betrachten. In dem zweiten Fall muss das Verhalten des Prozesses in der Nähe der Grenzen spezifiziert werden; in dieser Arbeit setzen wir reflektierende Grenzen. Die Fokker-Planck-Gleichung, zusammen mit einem Anfangswert und geeigneten Randbedingungen, erzeugt das Fokker-Planck-Problem. Die Lösbarkeit dieses Pro-blems in geeigneten Funktionenräumen und die Eigenschaften dessen Lösung werden diskutiert, nämlich die Positivität und die Wahrscheinlichkeitsmassenerhaltung. Da analytische Lösungen von Fokker-Planck-Problemen oft nicht verfügbar sind, m\"{u}ssen numerische Methoden verwendet werden. Die erste bemerkenswerte Leistung dieser Arbeit ist die Definition und Analyse von konservativen numerischen Verfahren, die Fokker-Planck-Probleme lösen. Unsere SIMEX1 und SIMEX2 (Splitting-Implizit-Explizit) Schemen basieren auf der Linienmethode. Der Differentialoperator wird durch das Finite-Volumen-Schema von Chang und Cooper diskretisiert, während der Integraloperator durch eine Mittelpunktregel angenähert wird. Dies führt zu einem großen System von gewöhnlichen Differentialgleichungen, das mit der Strang-Marchuk-Splitting-Methode gelöst wird. Diese Technik teilt das ursprüngliche Problem in eine Folge verschiedener Teilprobleme mit einer einfachen Struktur, die getrennt gelöst werden und danach durch deren Anfangswerte miteinander verbunden werden. Dank der Splitting-Methode kann jedes Teilproblem implizit oder explizit gelöst werden. Schließlich wird die numerische Integration des Anfangswertsproblems mit zwei Verfahren durchgeführt, n\"{a}mlich dem Euler-Verfahren und dem Predictor-Corrector-Verfahren. Eine umfassende Konvergenz- und Stabilitätsanalyse unserer Systeme ist enthalten. Darüber hinaus können wir beweisen, dass die Positivität und die Massenerhaltung der Lösung von Fokker-Planck-Problemen auf diskreter Ebene durch die numerischen Lösungen erfüllt werden, die mit den SIMEX-Schemen berechnet wurden. Die zweite bemerkenswerte Leistung dieser Arbeit ist die theoretische Analyse und die numerische Behandlung von Optimalsteuerungsproblemen, deren Nebenbedingungen die Fokker-Planck-Probleme von Sprung-Diffusions-Prozessen sind. Der Bereich der optimalen Steuerung befasst sich mit der Suche nach einer optimalen Funktion, die eine gegebene Zielfunktion minimiert. Wir zielen auf die Minimierung des Unterschieds zwischen einer bekannten Folge von Werten und dem ersten Moment eines Sprung-Diffusions-Prozesses. Auf diese Weise kann unsere Formulierung auch als ein Parameterschätzungsproblem für stochastische Prozesse angesehen werden. Zwei Fälle sind erläutert, in denen die Zielfunktion zeitstetig beziehungsweise zeitdiskret ist. Da die Steuerung ein Koeffizient des Integro-Differentialoperators der Zustandsglei-chung ist und die Zielfunktion einen $ L^1 $-Term beinhaltet, der die dünne Besetzung der Lösung erhöht, ist das Optimierungsproblem nichtkonvex und nichtglatt. Die von der optimalen L\"{o}sung erf\"{u}llten notwendigen Bedingungen werden hergeleitet, die man mit einem System beschreiben kann. Die Berechnung optimaler Lösungen wird mithilfe von Proximal-Methoden durchgeführt, die entsprechend um den unendlichdimensionalen Fall erweitert wurden.
20

Extremalbedingungen für Optimierungs-Probleme mit Algebro-Differentialgleichungen

Backes, André January 2006 (has links)
Zugl.: Berlin, Humboldt-Univ., Diss., 2006

Page generated in 0.0543 seconds