• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 15
  • 4
  • 1
  • Tagged with
  • 82
  • 82
  • 44
  • 27
  • 23
  • 22
  • 21
  • 16
  • 15
  • 15
  • 15
  • 12
  • 12
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Adaptive space-time finite element methods for optimization problems governed by nonlinear parabolic systems

Meidner, Dominik. January 2007 (has links)
Heidelberg, Univ., Diss., 2008.
52

Die Approximation der Anpassungsdynamik in makroökonomischen Modellen mit der Backward-Integration-Methode /

Brunner, Martin. January 2001 (has links)
Diss. Universiẗat Hamburg, 2001.
53

Singular stochastic control and its relations to Dynkin game and entry exit problems

Boetius, Frederik. Unknown Date (has links) (PDF)
University, Diss., 2002--Konstanz. / Erscheinungsjahr an der Haupttitelstelle: 2001.
54

Linear isoelastic stochastic control problems and backward stochastic differential equations of Riccati type

Bürkel, Volker. Unknown Date (has links) (PDF)
University, Diss., 2004--Konstanz.
55

Efficiency improving implementation techniques for large scale matrix equation solvers

Köhler, Martin, Saak, Jens 11 June 2010 (has links)
We address the important field of large scale matrix based algorithms in control and model order reduction. Many important tools from theory and applications in systems theory have been widely ignored during the recent decades in the context of PDE constraint optimal control problems and simulation of electric circuits. Often this is due to the fact that large scale matrices are suspected to be unsolvable in large scale applications. Since around 2000 efficient low rank theory for matrix equation solvers exists for sparse and also data sparse systems. Unfortunately upto now only incomplete or experimental Matlab implementations of most of these solvers have existed. Here we aim on the implementation of these algorithms in a higher programming language (in our case C) that allows for a high performance solver for many matrix equations arising in the context of large scale standard and generalized state space systems. We especially focus on efficient memory saving data structures and implementation techniques as well as the shared memory parallelization of the underlying algorithms.
56

Theoretical and numerical analysis of Fokker–Planck optimal control problems by first– and second–order optimality conditions / Theoretische und numerische Analysis von Fokker-Planck optimalen Steuerungsproblemen mittels Optimalitätsbedingung erster und zweiter Ordnung

Körner, Jacob January 2024 (has links) (PDF)
In this thesis, a variety of Fokker--Planck (FP) optimal control problems are investigated. Main emphasis is put on a first-- and second--order analysis of different optimal control problems, characterizing optimal controls, establishing regularity results for optimal controls, and providing a numerical analysis for a Galerkin--based numerical scheme. The Fokker--Planck equation is a partial differential equation (PDE) of linear parabolic type deeply connected to the theory of stochastic processes and stochastic differential equations. In essence, it describes the evolution over time of the probability distribution of the state of an object or system of objects under the influence of both deterministic and stochastic forces. The FP equation is a cornerstone in understanding and modeling phenomena ranging from the diffusion and motion of molecules in a fluid to the fluctuations in financial markets. Two different types of optimal control problems are analyzed in this thesis. On the one hand, Fokker--Planck ensemble optimal control problems are considered that have a wide range of applications in controlling a system of multiple non--interacting objects. In this framework, the goal is to collectively drive each object into a desired state. On the other hand, tracking--type control problems are investigated, commonly used in parameter identification problems or stemming from the field of inverse problems. In this framework, the aim is to determine certain parameters or functions of the FP equation, such that the resulting probability distribution function takes a desired form, possibly observed by measurements. In both cases, we consider FP models where the control functions are part of the drift, arising only from the deterministic forces of the system. Therefore, the FP optimal control problem has a bilinear control structure. Box constraints on the controls may be present, and the focus is on time--space dependent controls for ensemble--type problems and on only time--dependent controls for tracking--type optimal control problems. In the first chapter of the thesis, a proof of the connection between the FP equation and stochastic differential equations is provided. Additionally, stochastic optimal control problems, aiming to minimize an expected cost value, are introduced, and the corresponding formulation within a deterministic FP control framework is established. For the analysis of this PDE--constrained optimal control problem, the existence, and regularity of solutions to the FP problem are investigated. New $L^\infty$--estimates for solutions are established for low space dimensions under mild assumptions on the drift. Furthermore, based on the theory of Bessel potential spaces, new smoothness properties are derived for solutions to the FP problem in the case of only time--dependent controls. Due to these properties, the control--to--state map, which associates the control functions with the corresponding solution of the FP problem, is well--defined, Fréchet differentiable and compact for suitable Lebesgue spaces or Sobolev spaces. The existence of optimal controls is proven under various assumptions on the space of admissible controls and objective functionals. First--order optimality conditions are derived using the adjoint system. The resulting characterization of optimal controls is exploited to achieve higher regularity of optimal controls, as well as their state and co--state functions. Since the FP optimal control problem is non--convex due to its bilinear structure, a first--order analysis should be complemented by a second--order analysis. Therefore, a second--order analysis for the ensemble--type control problem in the case of $H^1$--controls in time and space is performed, and sufficient second--order conditions are provided. Analogous results are obtained for the tracking--type problem for only time--dependent controls. The developed theory on the control problem and the first-- and second--order optimality conditions is applied to perform a numerical analysis for a Galerkin discretization of the FP optimal control problem. The main focus is on tracking-type problems with only time--dependent controls. The idea of the presented Galerkin scheme is to first approximate the PDE--constrained optimization problem by a system of ODE--constrained optimization problems. Then, conditions on the problem are presented such that the convergence of optimal controls from one problem to the other can be guaranteed. For this purpose, a class of bilinear ODE--constrained optimal control problems arising from the Galerkin discretization of the FP problem is analyzed. First-- and second--order optimality conditions are established, and a numerical analysis is performed. A discretization with linear finite elements for the state and co--state problem is investigated, while the control functions are approximated by piecewise constant or piecewise quadratic continuous polynomials. The latter choice is motivated by the bilinear structure of the optimal control problem, allowing to overcome the discrepancies between a discretize--then--optimize and optimize--then--discretize approach. Moreover, second--order accuracy results are shown using the space of continuous, piecewise quadratic polynomials as the discrete space of controls. Lastly, the theoretical results and the second--order convergence rates are numerically verified. / In dieser Dissertation werden verschiedene Fokker--Planck (FP) optimale Steuerungsprobleme untersucht. Die Schwerpunkte liegen auf einer Analyse von Optimalitätsbedingungen erster und zweiter Ordnung, der Charakterisierung optimaler Steuerungen, dem Herleiten höhere Regularität von optimalen Kontrollen sowie einer theoretischen numerischen Analyse für ein numerisches Verfahren basierend auf einer Galerkin Approximation. Die Fokker--Planck Gleichung ist eine lineare, parabolische, partielle Differentialgleichung (PDE), die aus dem Gebiet stochastischer Differentialgleichungen und stochastischer Prozesse stammt. Im Wesentlichen beschreibt sie die zeitliche Entwicklung der Wahrscheinlichkeitsverteilung des Zustands eines Objekts bzw. eines Systems von Objekten unter dem Einfluss sowohl deterministischer als auch stochastischer Kräfte. Die Fokker--Planck Gleichung ist ein Eckpfeiler zum Verständnis und Modellieren von Phänomenen, die von der Diffusion und Bewegung von Molekülen in einer Flüssigkeit bis hin zu den Schwankungen in Finanzmärkten reichen. Zwei verschiedene Arten von optimalen Kontrollproblemen werden in dieser Arbeit umfassend analysiert. Einerseits werden Fokker--Planck Ensemble Steuerungsprobleme betrachtet, die in der Kontrolle von Systemen mit mehreren nicht wechselwirkenden Objekten vielfältige Anwendungen haben. In diesem Gebiet ist das Ziel, alle Objekte gemeinsam in einen gewünschten Zustand zu lenken. Andererseits werden Tracking Kontrollprobleme untersucht, die häufig bei Parameteridentifikationsproblemen auftreten oder aus dem Bereich inverser Probleme stammen. Hier besteht das Ziel darin, bestimmte Parameter oder Funktionen der Fokker--Planck Gleichung derart zu bestimmen, dass die resultierende Wahrscheinlichkeitsverteilung eine gewünschte Form annimmt, welche beispielsweise durch Messungen beobachtet wurde. In beiden Fällen betrachten wir FP Modelle, bei denen die Kontrollfunktion Teil des sogenannten Drifts ist, das heißt der Teil, der nur aus den deterministischen Kräften des Systems resultiert. Daher hat das FP Kontrollproblem eine bilineare Struktur. Untere und obere Schranken für die Kontrollfunktionen können vorhanden sein, und der Fokus liegt auf zeit-- und raumabhängigen Steuerungen für Ensemble Kontrollprobleme, sowie auf nur zeitlich abhängigen Steuerungen für Tracking Kontrollprobleme. Am Anfang der Dissertation wird ein Beweis für den Zusammenhang zwischen der FP Gleichung und stochastischen Differentialgleichungen dargelegt. Darüber hinaus werden stochastische optimale Steuerungsprobleme eingeführt, deren Ziel es ist, einen erwarteten Kostenwert zu minimieren. Zusätzlich wird das Problem als ein deterministisches FP Kontrollproblem formuliert. Für die Analyse dieses Kontrollproblems wird die Existenz und Regularität von Lösungen für die FP Differentialgleichung untersucht. Neue $L^\infty$--Abschätzungen für Lösungen werden für niedrige Raumdimensionen unter schwachen Annahmen an den Drift bewiesen. Zusätzlich werden, basierend auf der Theorie über Bessel Potentialräume, neue Glattheitseigenschaften für Lösungen des FP--Problems im Falle zeitabhängiger Steuerungen erarbeitet. Aufgrund dieser Eigenschaften ist die sogenannte control--to--state Abbildung, welche die Kontrollfunktion mit der entsprechenden Lösung des FP Problems verknüpft, wohldefiniert, Fréchet--differenzierbar und kompakt für geeignete Lebesgue--Räume oder Sobolev--Räume. Die Existenz optimaler Steuerungen wird unter verschiedenen Annahmen an den Funktionenraum der Kontrollen und des Kostenfunktionals bewiesen. Optimalitätsbedingungen erster Ordnung werden unter Verwendung des adjungierten Systems aufgestellt. Die daraus resultierende Charakterisierung optimaler Steuerungen wird genutzt, um eine höhere Regularität optimaler Steuerungen sowie ihrer Zustandsfunktion und des adjungierten Problems zu erhalten. Da das FP Kontrollproblem aufgrund der bilinearen Struktur nicht konvex ist, sollte eine Analyse von Optimalitätsbedingungen erster Ordnung durch eine Analyse von Optimalitätsbedingungen zweiter Ordnung ergänzt werden. Dies wird für das Ensemble Kontrollproblem im Fall von zeit-- und ortsabhängigen Steuerungen mit $H^1$--Regularität durchgeführt, und hinreichende Bedingungen für lokale Minimierer werden hergeleitet. Analoge Ergebnisse werden für das Tracking--Problem für nur zeitabhängige Steuerungen bewiesen. Die entwickelte Theorie zu diesem optimalen Steuerungsproblem und dessen Optimalitätsbedingungen wird angewendet, um eine numerische Analyse für eine Galerkin--Diskretisierung des FP Kontrollproblems durchzuführen. Der Schwerpunkt liegt auf Tracking--Problemen mit nur zeitabhängigen Steuerungen. Die Idee des vorgestellten Galerkin--Verfahrens besteht darin, das PDE--Optimierungsproblem zunächst durch ein System von Optimierungsproblemen mit gewöhnlichen Differentialgleichungen (ODE) als Nebenbedingung zu approximieren. Dann werden Bedingungen an das Problem präsentiert, sodass die Konvergenz optimaler Steuerungen von einem Problem zum anderen garantiert werden kann. Zu diesem Zweck wird eine Klasse bilinearer ODE--Kontrollprobleme analysiert, welche sich aus der Galerkin--Diskretisierung des FP Problems ergeben. Optimalitätsbedingungen erster und zweiter Ordnung werden bewiesen, und eine numerische Analyse wird durchgeführt. Eine Diskretisierung mit linearen Finiten--Elementen der Zustands-- und Adjungiertengleichung wird untersucht, während die Kontrollfunktionen durch stückweise konstante oder stetige, stückweise quadratische Polynome approximiert werden. Diese Wahl wird durch die bilineare Struktur des optimalen Kontrollproblems begründet, da sie es ermöglicht, die Diskrepanzen zwischen einem Ansatz von ,,zuerst diskretisieren dann optimieren" und ,,zuerst optimieren, dann diskretisieren" zu überwinden. Durch die Verwendung stetiger, stückweise quadratischer Polynome als Diskretisierung der Steuerungen kann außerdem quadratische Konvergenzordnung gezeigt werden. Abschließend werden die theoretischen Ergebnisse und die Konvergenzraten zweiter Ordnung numerisch verifiziert.
57

Memory efficient approaches of second order for optimal control problems / Speichereffiziente Verfahren zweiter Ordnung für Probleme der optimalen Steuerung

Sternberg, Julia 16 December 2005 (has links) (PDF)
Consider a time-dependent optimal control problem, where the state evolution is described by an initial value problem. There are a variety of numerical methods to solve these problems. The so-called indirect approach is considered detailed in this thesis. The indirect methods solve decoupled boundary value problems resulting from the necessary conditions for the optimal control problem. The so-called Pantoja method describes a computationally efficient stage-wise construction of the Newton direction for the discrete-time optimal control problem. There are many relationships between multiple shooting techniques and Pantoja method, which are investigated in this thesis. In this context, the equivalence of Pantoja method and multiple shooting method of Riccati type is shown. Moreover, Pantoja method is extended to the case where the state equations are discretised using one of implicit numerical methods. Furthermore, the concept of symplecticness and Hamiltonian systems is introduced. In this regard, a suitable numerical method is presented, which can be applied to unconstrained optimal control problems. It is proved that this method is a symplectic one. The iterative solution of optimal control problems in ordinary differential equations by Pantoja or Riccati equivalent methods leads to a succession of triple sweeps through the discretised time interval. The second (adjoint) sweep relies on information from the first (original) sweep, and the third (final) sweep depends on both of them. Typically, the steps on the adjoint sweep involve more operations and require more storage than the other two. The key difficulty is given by the enormous amount of memory required for the implementation of these methods if all states throughout forward and adjoint sweeps are stored. One of goals of this thesis is to present checkpointing techniques for memory reduced implementation of these methods. For this purpose, the well known aspect of checkpointing has to be extended to a `nested checkpointing` for multiple transversals. The proposed nested reversal schedules drastically reduce the required spatial complexity. The schedules are designed to minimise the overall execution time given a certain total amount of storage for the checkpoints. The proposed scheduling schemes are applied to the memory reduced implementation of the optimal control problem of laser surface hardening and other optimal control problems. / Es wird ein Problem der optimalen Steuerung betrachtet. Die dazugehoerigen Zustandsgleichungen sind mit einer Anfangswertaufgabe definiert. Es existieren zahlreiche numerische Methoden, um Probleme der optimalen Steuerung zu loesen. Der so genannte indirekte Ansatz wird in diesen Thesen detailliert betrachtet. Die indirekten Methoden loesen das aus den Notwendigkeitsbedingungen resultierende Randwertproblem. Das so genannte Pantoja Verfahren beschreibt eine zeiteffiziente schrittweise Berechnung der Newton Richtung fuer diskrete Probleme der optimalen Steuerung. Es gibt mehrere Beziehungen zwischen den unterschiedlichen Mehrzielmethoden und dem Pantoja Verfahren, die in diesen Thesen detailliert zu untersuchen sind. In diesem Zusammenhang wird die aequivalence zwischen dem Pantoja Verfahren und der Mehrzielmethode vom Riccati Typ gezeigt. Ausserdem wird das herkoemlige Pantoja Verfahren dahingehend erweitert, dass die Zustandsgleichungen mit Hilfe einer impliziten numerischen Methode diskretisiert sind. Weiterhin wird das Symplektische Konzept eingefuehrt. In diesem Zusammenhang wird eine geeignete numerische Methode praesentiert, die fuer ein unrestringiertes Problem der optimalen Steuerung angewendet werden kann. In diesen Thesen wird bewiesen, dass diese Methode symplectisch ist. Das iterative Loesen eines Problems der optimalen Steuerung in gewoenlichen Differentialgleichungen mit Hilfe von Pantoja oder Riccati aequivalenten Verfahren fuehrt auf eine Aufeinanderfolge der Durchlaeufetripeln in einem diskretisierten Zeitintervall. Der zweite (adjungierte) Lauf haengt von der Information des ersten (primalen) Laufes, und der dritte (finale) Lauf haeng von den beiden vorherigen ab. Ueblicherweise beinhalten Schritte und Zustaende des adjungierten Laufes wesentlich mehr Operationen und benoetigen auch wesentlich mehr Speicherplatzkapazitaet als Schritte und Zustaende der anderen zwei Durchlaeufe. Das Grundproblem besteht in einer enormen Speicherplatzkapazitaet, die fuer die Implementierung dieser Methoden benutzt wird, falls alle Zustaende des primalen und des adjungierten Durchlaufes zu speichern sind. Ein Ziel dieser Thesen besteht darin, Checkpointing Strategien zu praesentieren, um diese Methoden speichereffizient zu implementieren. Diese geschachtelten Umkehrschemata sind so konstruiert, dass fuer einen gegebenen Speicherplatz die gesamte Laufzeit zur Abarbeitung des Umkehrschemas minimiert wird. Die aufgestellten Umkehrschemata wurden fuer eine speichereffiziente Implementierung von Problemen der optimalen Steuerung angewendet. Insbesondere betrifft dies das Problem einer Oberflaechenabhaertung mit Laserbehandlung.
58

Memory efficient approaches of second order for optimal control problems

Sternberg, Julia 20 December 2005 (has links)
Consider a time-dependent optimal control problem, where the state evolution is described by an initial value problem. There are a variety of numerical methods to solve these problems. The so-called indirect approach is considered detailed in this thesis. The indirect methods solve decoupled boundary value problems resulting from the necessary conditions for the optimal control problem. The so-called Pantoja method describes a computationally efficient stage-wise construction of the Newton direction for the discrete-time optimal control problem. There are many relationships between multiple shooting techniques and Pantoja method, which are investigated in this thesis. In this context, the equivalence of Pantoja method and multiple shooting method of Riccati type is shown. Moreover, Pantoja method is extended to the case where the state equations are discretised using one of implicit numerical methods. Furthermore, the concept of symplecticness and Hamiltonian systems is introduced. In this regard, a suitable numerical method is presented, which can be applied to unconstrained optimal control problems. It is proved that this method is a symplectic one. The iterative solution of optimal control problems in ordinary differential equations by Pantoja or Riccati equivalent methods leads to a succession of triple sweeps through the discretised time interval. The second (adjoint) sweep relies on information from the first (original) sweep, and the third (final) sweep depends on both of them. Typically, the steps on the adjoint sweep involve more operations and require more storage than the other two. The key difficulty is given by the enormous amount of memory required for the implementation of these methods if all states throughout forward and adjoint sweeps are stored. One of goals of this thesis is to present checkpointing techniques for memory reduced implementation of these methods. For this purpose, the well known aspect of checkpointing has to be extended to a `nested checkpointing` for multiple transversals. The proposed nested reversal schedules drastically reduce the required spatial complexity. The schedules are designed to minimise the overall execution time given a certain total amount of storage for the checkpoints. The proposed scheduling schemes are applied to the memory reduced implementation of the optimal control problem of laser surface hardening and other optimal control problems. / Es wird ein Problem der optimalen Steuerung betrachtet. Die dazugehoerigen Zustandsgleichungen sind mit einer Anfangswertaufgabe definiert. Es existieren zahlreiche numerische Methoden, um Probleme der optimalen Steuerung zu loesen. Der so genannte indirekte Ansatz wird in diesen Thesen detailliert betrachtet. Die indirekten Methoden loesen das aus den Notwendigkeitsbedingungen resultierende Randwertproblem. Das so genannte Pantoja Verfahren beschreibt eine zeiteffiziente schrittweise Berechnung der Newton Richtung fuer diskrete Probleme der optimalen Steuerung. Es gibt mehrere Beziehungen zwischen den unterschiedlichen Mehrzielmethoden und dem Pantoja Verfahren, die in diesen Thesen detailliert zu untersuchen sind. In diesem Zusammenhang wird die aequivalence zwischen dem Pantoja Verfahren und der Mehrzielmethode vom Riccati Typ gezeigt. Ausserdem wird das herkoemlige Pantoja Verfahren dahingehend erweitert, dass die Zustandsgleichungen mit Hilfe einer impliziten numerischen Methode diskretisiert sind. Weiterhin wird das Symplektische Konzept eingefuehrt. In diesem Zusammenhang wird eine geeignete numerische Methode praesentiert, die fuer ein unrestringiertes Problem der optimalen Steuerung angewendet werden kann. In diesen Thesen wird bewiesen, dass diese Methode symplectisch ist. Das iterative Loesen eines Problems der optimalen Steuerung in gewoenlichen Differentialgleichungen mit Hilfe von Pantoja oder Riccati aequivalenten Verfahren fuehrt auf eine Aufeinanderfolge der Durchlaeufetripeln in einem diskretisierten Zeitintervall. Der zweite (adjungierte) Lauf haengt von der Information des ersten (primalen) Laufes, und der dritte (finale) Lauf haeng von den beiden vorherigen ab. Ueblicherweise beinhalten Schritte und Zustaende des adjungierten Laufes wesentlich mehr Operationen und benoetigen auch wesentlich mehr Speicherplatzkapazitaet als Schritte und Zustaende der anderen zwei Durchlaeufe. Das Grundproblem besteht in einer enormen Speicherplatzkapazitaet, die fuer die Implementierung dieser Methoden benutzt wird, falls alle Zustaende des primalen und des adjungierten Durchlaufes zu speichern sind. Ein Ziel dieser Thesen besteht darin, Checkpointing Strategien zu praesentieren, um diese Methoden speichereffizient zu implementieren. Diese geschachtelten Umkehrschemata sind so konstruiert, dass fuer einen gegebenen Speicherplatz die gesamte Laufzeit zur Abarbeitung des Umkehrschemas minimiert wird. Die aufgestellten Umkehrschemata wurden fuer eine speichereffiziente Implementierung von Problemen der optimalen Steuerung angewendet. Insbesondere betrifft dies das Problem einer Oberflaechenabhaertung mit Laserbehandlung.
59

Numerical Aspects in Optimal Control of Elasticity Models with Large Deformations

Günnel, Andreas 22 August 2014 (has links) (PDF)
This thesis addresses optimal control problems with elasticity for large deformations. A hyperelastic model with a polyconvex energy density is employed to describe the elastic behavior of a body. The two approaches to derive the nonlinear partial differential equation, a balance of forces and an energy minimization, are compared. Besides the conventional volume and boundary loads, two novel internal loads are presented. Furthermore, curvilinear coordinates and a hierarchical plate model can be incorporated into the formulation of the elastic forward problem. The forward problem can be solved with Newton\\\'s method, though a globalization technique should be used to avoid divergence of Newton\\\'s method. The repeated solution of the Newton system is done by a CG or MinRes method with a multigrid V-cycle as a preconditioner. The optimal control problem consists of the displacement (as the state) and a load (as the control). Besides the standard tracking-type objective, alternative objective functionals are presented for problems where a reasonable desired state cannot be provided. Two methods are proposed to solve the optimal control problem: an all-at-once approach by a Lagrange-Newton method and a reduced formulation by a quasi-Newton method with an inverse limited-memory BFGS update. The algorithms for the solution of the forward problem and the optimal control problem are implemented in the finite-element software FEniCS, with the geometrical multigrid extension FMG. Numerical experiments are performed to demonstrate the mesh independence of the algorithms and both optimization methods.
60

The H_infinity Optimal Control Problem for Descriptor Systems

Losse, Philip 04 November 2011 (has links)
The H_infinity control problem is studied for linear constant coefficient descriptor systems. Necessary and sufficient optimality conditions as well as controller formulas are derived in terms of deflating subspaces of even matrix pencils for problems of arbitrary index. A structure preserving method for computing these subspaces is introduced. In combination these results allow the derivation of a numerical algorithm with advantages over the classical methods.

Page generated in 0.0499 seconds