• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 209
  • 28
  • 25
  • 18
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 364
  • 234
  • 96
  • 43
  • 38
  • 36
  • 32
  • 30
  • 26
  • 25
  • 24
  • 24
  • 24
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Low temperature metal-based micro fabrication and packaging technology /

Ma, Wei. January 2005 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2005. / Includes bibliographical references. Also available in electronic version.
172

On a photonic bus architecture that incorporates wavelength multiplexing and reuse for reconfigurable computers /

Boros, Vince Elias. January 2004 (has links) (PDF)
Thesis (Ph.D.) - University of Queensland, 2004. / Includes bibliography.
173

Organic optoelectronic devices based on platinum(II) complexes and polymers

Xiang, Haifeng. January 2005 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
174

Current mode processing and architecture for optoelectronically interconnected arrays /

Azadeh, Mohammad. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 120-131).
175

Caractérisation optoélectronique large bande de la réponse spectrale de détecteurs d'ondes Térahertz / Wide-band optoelectronic spectral characterisation of Terahertz detectors

Oden, Jonathan 13 March 2015 (has links)
Les ondes térahertz sont à l'origine de nombreuses applications, notamment dans les domaines de la sécurité (portiques d'aéroports), de la médecine (étude des interactions ondes-molécules), et des télécommunications sans fils à très haut débit. Pour toutes ces applications, les détecteurs de puissance sont d'un grand intérêt puisqu'ils intègrent l'intensité de la radiation incidente. Cette caractéristique leur permet d'enregistrer des signaux sans avoir recours à une activation hétérodyne, contrairement aux détecteurs de champ térahertz. L'objectif de ce travail de thèse est de réaliser la caractérisation de la réponse spectrale de détecteurs de puissance térahertz, principalement dédiés à l'intégration des dispositifs de télécommunications sans fils. Pour cela, nous avons élaboré une expérience impulsionnelle large bande construite autour d'un laser femtoseconde (amplifié ou non), d'un émetteur térahertz (photocommutateur ou cristal non-linéaire) ainsi que d'un interféromètre à deux ondes (Michelson). Dans un premier temps, nous décrivons le fonctionnement de l'expérience et déterminons ses limites au travers d'une étude paramétrique. Plusieurs configurations, choisies en fonction des lasers utilisés, sont sélectionnées afin d'obtenir les meilleures performances possibles. La méthode de caractérisation des détecteurs de puissance est ensuite démontrée et validée expérimentalement. Enfin, nous profitons de la polyvalence du banc pour montrer, d'une part, la possibilité de réaliser la caractérisation spatiale et spectrale d'un faisceau térahertz en une unique mesure résolue temporellement ; et d'autre part, la caractérisation de l'indice de réfraction et de l'absorption d'un milieu faiblement absorbant. / Terahertz waves have led to a lot of applications, such as security, biology, and high speed wireless telecommunications. Moreover, power detectors are also very useful because they integrate the radiation intensity. This thesis focus on the characterisation of the spectral response of terahertz power detectors in order to integrate wireless communication devices. To that end, we designed an wide-band set-up made of a femtosecond laser, a terahertz emitter, and a two-wave Michelson interferometer. Firstly, we describe how the experiment works, and show its limits through a parametric study. Various configurations were considered, according to the used lasers, in order to obtain the best performances. We then show how to characterise the power detectors response, and validate the experimental results. Finally, thanks to the versatility of our set-up, we show that a unique measurement can give us both a spectral and a spatial beam characterisation at the same time. On the other hand, we also have access to the refractive index and the absorption of weakly absorbing media by the mean of spectroscopic methods.
176

Geradores Quanto-Ãpticos de NÃmeros AleatÃrios / Generators-Optical Random Number

Emanoela de Jesus Lopes Soares 22 February 2013 (has links)
nÃo hà / Geradores quÃnticos de nÃmeros aleatÃrios (GQNA) tÃm importantes aplicaÃÃes em protocolos criptogrÃficos, jogos e loterias, entre outros. Em contraste com geradores de nÃmeros pseudoaleatÃrios baseados em software, a sequÃncia de nÃmeros gerada à verdadeiramente aleatÃria. A maioria dos GQNA encontrados na literatura à baseado em dispositivos optoeletrÃnicos, como fontes de fÃtons Ãnicos e detectores de fÃtons. Nesta direÃÃo, a presente dissertaÃÃo trata da teoria e experimento de GQNAs baseados em sistemas fotÃnicos, considerando geradores com variÃveis discretas e contÃnuas. Em particular, trÃs problemas foram considerados: 1) um novo modelo de GQNA de variÃvel contÃnua utilizando a polarizaÃÃo da luz foi proposto. 2) a anÃlise de desempenho de um GQNA usando apenas um detector de fÃtons, levando em consideraÃÃo o afterpulsing e o tipo de estado quÃntico da luz utilizado, coerente ou tÃrmico, foi realizada. 3) um GQNA com distribuiÃÃo binomial foi construÃdo. / Quantum random number generators (QRNG) have important applications in cryptographic protocols, gaming and lotteries, among others. In contrast to pseudo-random number generators based on software, the sequence of random numbers generated is truly random. Most QRNG found in the literature are based on optoelectronic devices like single-photon sources and single-photon detectors. In this direction, the present dissertation deals with the theory and experiment QRNG based photonic systems, taking into account QRNG using discrete and continuous variables. In particular, three issues were considered: 1) a new model of continuous variable QRNG based on light polarization was proposed. 2) The performance of a QRNG employing only one single-photon detector, taking into account the afterpulsing and the quantum light state used, coherent or thermal, was realized. 3) A QRNG with binomial distribution was built.
177

Synthesis, characterization and optoelectronic applications of new conjugated organic and organometallic polymers

Zhan, Hongmei 01 January 2011 (has links)
No description available.
178

Photonic Generation of Microwave and Millimeter Wave Signals

Li, Wangzhe January 2013 (has links)
Photonic generation of ultra-low phase noise and frequency-tunable microwave or millimeter-wave (mm-wave) signals has been a topic of interest in the last few years. Advanced photonic techniques, especially the recent advancement in photonic components, have enabled the generation of microwave and mm-wave signals at high frequencies with a large tunable range and ultra-low phase noise. In this thesis, techniques to generate microwave and mm-wave signals in the optical domain are investigated, with an emphasis on system architectures to achieve large frequency tunability and low phase noise. The thesis consists of two parts. In the first part, techniques to generate microwave and mm-wave signals based on microwave frequency multiplication are investigated. Microwave frequency multiplication can be realized in the optical domain based on external modulation using a Mach-Zehnder modulator (MZM), but with limited multiplication factor. Microwave frequency multiplication based on external modulation using two cascaded MZMs to provide a larger multiplication factor has been proposed, but no generalized approach has been developed. In this thesis, a generalized approach to achieving microwave frequency multiplication using two cascaded MZMs is presented. A theoretical analysis leading to the operating conditions to achieve frequency quadrupling, sextupling or octupling is developed. The system performance in terms of phase noise, tunability and stability is investigated. To achieve microwave generation with a frequency multiplication factor (FMF) of 12, a technique based on a joint operation of polarization modulation, four-wave mixing and stimulated-Brillouin-scattering-assisted filtering is also proposed. The generation of a frequency-tunable mm-wave signal from 48 to 132 GHz is demonstrated. The proposed architecture can even potentially boost the FMF up to 24. In the second part, techniques to generate ultra-low phase noise and frequency-tunable microwave and mm-wave signals based on an optoelectronic oscillator (OEO) are studied. The key component in an OEO to achieve low phase noise and large frequency-tunable operation is the microwave bandpass filter. In the thesis, we first develop a microwave photonic filter with an ultra-narrow passband and large tunability based on a phase-shifted fiber Bragg grating (PS-FBG). Then, an OEO incorporating such a microwave photonic filter is developed. The performance including the tunable range and phase noise is evaluated. To further increase the frequency tunable range, a technique to achieve microwave frequency multiplication in an OEO is proposed. An mm-wave signal with a tunable range more than 40 GHz is demonstrated.
179

Design of Multi-junction Solar Cells on Silicon Substrates Using a Porous Silicon Compliant Membrane

Wilkins, Matthew M. January 2013 (has links)
A novel approach to the design of multi-junction solar cells on silicon substrates for 1-sun applications is described. Models for device simulation including porous silicon layers are presented. A silicon bottom subcell is formed by diffusion of dopants into a silicon wafer. The top of the wafer is porosified to create a compliant layer, and a III-V buffer layer is then grown epitaxially, followed by middle and top subcells. Due to the resistivity of the porous material, these designs are best suited to high efficiency 1-sun applications. Numerical simulations of a multi-junction solar cell incorporating a porous silicon compliant membrane indicate an efficiency of 30.7% under AM1.5G, 1-sun for low threading dislocation densities (TDD), decreasing to 23.7% for a TDD of 10^7 cm^-2.
180

Dual-frequency Optoelectronic Oscillator and its Application in Transverse Load Sensing

Kong, Fanqi January 2014 (has links)
In this thesis, dual-frequency optoelectronic oscillators (OEOs) and their applications to transverse load sensing are studied. Two configurations of dual-frequency OEOs are proposed and investigated. In the first configuration, a polarization-maintaining phase-shifted fiber Bragg grating (PM-PSFBG) is employed in the OEO loop to the generation of two oscillating frequencies. The beat between the two oscillating frequencies is a function of the load applied to the PM-PSFBG, which is used in transverse load sensing. To avoid the frequency measurement ambiguity, a second configuration is proposed by coupling a dual-wavelength fiber laser to the dual-frequency OEO. A single tone microwave signal with the frequency determined by the birefringence of the grating is generated in the OEO and is fed into the fiber ring laser to injection lock the dual wavelengths. The sensitivity and the resolution are measured to be 9.73 GHz/(N/mm) and 2.06×10-4 N/mm, respectively. The high stability of the single-tone microwave signal permits accurate measurement, while the frequency interrogation allows an ultra-high speed demodulation.

Page generated in 0.0438 seconds