Spelling suggestions: "subject:"ordinateur"" "subject:"ordination""
1 |
Development and Implementation of New In Situ Techniques for the Study of Interfacial PhenomenaHai, Bin January 2010 (has links)
No description available.
|
2 |
Enhancements to reverse engineering : surface modelling and segmentation of CMM dataBardell, Rayman A. January 2000 (has links)
No description available.
|
3 |
Estudo e aplicacao dos codigos ANISN e DOT 3.5 a problemas de blindagem de radiacoes nuclearesOTTO, ARTHUR C. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:31:32Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:00:39Z (GMT). No. of bitstreams: 1
01393.pdf: 6272774 bytes, checksum: c514f9c6bee392dc905cb73237a991d1 (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
|
4 |
Diagnóstico de influência bayesiano em modelos de regressão da família t-assimétrica / Bayesian influence diagnostic in skew-t family linear regression modelsSilva, Diego Wesllen da 05 May 2017 (has links)
O modelo de regressão linear com erros na família de distribuições t-assimétrica, que contempla as distribuições normal, t-Student e normal assimétrica como casos particulares, tem sido considerado uma alternativa robusta ao modelo normal. Para concluir qual modelo é, de fato, mais robusto, é importante ter um método tanto para identificar uma observação como discrepante quanto aferir a influência que esta observação terá em nossas estimativas. Nos modelos de regressão bayesianos, uma das medidas de identificação de observações discrepantes mais conhecidas é a conditional predictive ordinate (CPO). Analisamos a influência dessas observações nas estimativas tanto de forma global, isto é, no vetor completo de parâmetros do modelo quanto de forma marginal, apenas nos parâmetros regressores. Consideramos a norma L1 e a divergência Kullback-Leibler como medidas de influência das observações nas estimativas dos parâmetros. Além disso, encontramos as distribuições condicionais completas de todos os modelos para o uso do algoritmo de Gibbs obtendo, assim, amostras da distribuição a posteriori dos parâmetros. Tais amostras são utilizadas no calculo do CPO e das medidas de divergência estudadas. A principal contribuição deste trabalho é obter as medidas de influência global e marginal calculadas para os modelos t-Student, normal assimétrico e t-assimétrico. Na aplicação em dados reais originais e contaminados, observamos que, em geral, o modelo t-Student é uma alternativa robusta ao modelo normal. Por outro lado, o modelo t-assimétrico não é, em geral, uma alternativa robusta ao modelo normal. A capacidade de robustificação do modelo t-assimétrico está diretamente ligada à posição do resíduo do ponto discrepante em relação a distribuição dos resíduos. / The linear regression model with errors in the skew-t family, which includes the normal, Student-t and skew normal distributions as particular cases, has been considered as a robust alternative to the normal model. To conclude which model is in fact more robust its important to have a method to identify an observation as outlier, as well as to assess the influence of this observation in the estimates. In bayesian regression models, one of the most known measures to identify an outlier is the conditional predictive ordinate (CPO). We analyze the influence of these observations on the estimates both in a global way, that is, in the complete parameter vector of the model and in a marginal way, only in the regressor parameters. We consider the L1 norm and the Kullback-Leibler divergence as influence measures of the observations on the parameter estimates. Using the bayesian approach, we find the complete conditional distributions of all the models for the usage of the Gibbs sampler thus obtaining samples of the posterior distribution of the parameters. These samples are used in the calculation of the CPO and the studied divergence measures. The major contribution of this work is to present the global and marginal influence measures calculated for the Student-t, skew normal and skew-t models. In the application on original and contaminated real data, we observed that in general the Student-t model is a robust alternative to the normal model. However, the skew-t model is not a robust alternative to the normal model. The robustification capability of the skew-t model is directly linked to the position of the residual of the outlier in relation to the distribution of the residuals.
|
5 |
Diagnóstico de influência bayesiano em modelos de regressão da família t-assimétrica / Bayesian influence diagnostic in skew-t family linear regression modelsDiego Wesllen da Silva 05 May 2017 (has links)
O modelo de regressão linear com erros na família de distribuições t-assimétrica, que contempla as distribuições normal, t-Student e normal assimétrica como casos particulares, tem sido considerado uma alternativa robusta ao modelo normal. Para concluir qual modelo é, de fato, mais robusto, é importante ter um método tanto para identificar uma observação como discrepante quanto aferir a influência que esta observação terá em nossas estimativas. Nos modelos de regressão bayesianos, uma das medidas de identificação de observações discrepantes mais conhecidas é a conditional predictive ordinate (CPO). Analisamos a influência dessas observações nas estimativas tanto de forma global, isto é, no vetor completo de parâmetros do modelo quanto de forma marginal, apenas nos parâmetros regressores. Consideramos a norma L1 e a divergência Kullback-Leibler como medidas de influência das observações nas estimativas dos parâmetros. Além disso, encontramos as distribuições condicionais completas de todos os modelos para o uso do algoritmo de Gibbs obtendo, assim, amostras da distribuição a posteriori dos parâmetros. Tais amostras são utilizadas no calculo do CPO e das medidas de divergência estudadas. A principal contribuição deste trabalho é obter as medidas de influência global e marginal calculadas para os modelos t-Student, normal assimétrico e t-assimétrico. Na aplicação em dados reais originais e contaminados, observamos que, em geral, o modelo t-Student é uma alternativa robusta ao modelo normal. Por outro lado, o modelo t-assimétrico não é, em geral, uma alternativa robusta ao modelo normal. A capacidade de robustificação do modelo t-assimétrico está diretamente ligada à posição do resíduo do ponto discrepante em relação a distribuição dos resíduos. / The linear regression model with errors in the skew-t family, which includes the normal, Student-t and skew normal distributions as particular cases, has been considered as a robust alternative to the normal model. To conclude which model is in fact more robust its important to have a method to identify an observation as outlier, as well as to assess the influence of this observation in the estimates. In bayesian regression models, one of the most known measures to identify an outlier is the conditional predictive ordinate (CPO). We analyze the influence of these observations on the estimates both in a global way, that is, in the complete parameter vector of the model and in a marginal way, only in the regressor parameters. We consider the L1 norm and the Kullback-Leibler divergence as influence measures of the observations on the parameter estimates. Using the bayesian approach, we find the complete conditional distributions of all the models for the usage of the Gibbs sampler thus obtaining samples of the posterior distribution of the parameters. These samples are used in the calculation of the CPO and the studied divergence measures. The major contribution of this work is to present the global and marginal influence measures calculated for the Student-t, skew normal and skew-t models. In the application on original and contaminated real data, we observed that in general the Student-t model is a robust alternative to the normal model. However, the skew-t model is not a robust alternative to the normal model. The robustification capability of the skew-t model is directly linked to the position of the residual of the outlier in relation to the distribution of the residuals.
|
6 |
Regression analysis with longitudinal measurementsRyu, Duchwan 29 August 2005 (has links)
Bayesian approaches to the regression analysis for longitudinal measurements are
considered. The history of measurements from a subject may convey characteristics
of the subject. Hence, in a regression analysis with longitudinal measurements, the
characteristics of each subject can be served as covariates, in addition to possible other
covariates. Also, the longitudinal measurements may lead to complicated covariance
structures within each subject and they should be modeled properly.
When covariates are some unobservable characteristics of each subject, Bayesian
parametric and nonparametric regressions have been considered. Although covariates
are not observable directly, by virtue of longitudinal measurements, the covariates
can be estimated. In this case, the measurement error problem is inevitable. Hence,
a classical measurement error model is established. In the Bayesian framework, the
regression function as well as all the unobservable covariates and nuisance parameters
are estimated. As multiple covariates are involved, a generalized additive model is
adopted, and the Bayesian backfitting algorithm is utilized for each component of the
additive model. For the binary response, the logistic regression has been proposed,
where the link function is estimated by the Bayesian parametric and nonparametric
regressions. For the link function, introduction of latent variables make the computing
fast.
In the next part, each subject is assumed to be observed not at the prespecifiedtime-points. Furthermore, the time of next measurement from a subject is supposed to
be dependent on the previous measurement history of the subject. For this outcome-
dependent follow-up times, various modeling options and the associated analyses
have been examined to investigate how outcome-dependent follow-up times affect
the estimation, within the frameworks of Bayesian parametric and nonparametric
regressions. Correlation structures of outcomes are based on different correlation
coefficients for different subjects. First, by assuming a Poisson process for the follow-
up times, regression models have been constructed. To interpret the subject-specific
random effects, more flexible models are considered by introducing a latent variable
for the subject-specific random effect and a survival distribution for the follow-up
times. The performance of each model has been evaluated by utilizing Bayesian
model assessments.
|
7 |
Empirical Likelihood Confidence Intervals for Generalized Lorenz CurveBelinga-Hill, Nelly E. 28 November 2007 (has links)
Lorenz curves are extensively used in economics to analyze income inequality metrics. In this thesis, we discuss confidence interval estimation methods for generalized Lorenz curve. We first obtain normal approximation (NA) and empirical likelihood (EL) based confidence intervals for generalized Lorenz curves. Then we perform simulation studies to compare coverage probabilities and lengths of the proposed EL-based confidence interval with the NA-based confidence interval for generalized Lorenz curve. Simulation results show that the EL-based confidence intervals have better coverage probabilities and shorter lengths than the NA-based intervals at 100p-th percentiles when p is greater than 0.50. Finally, two real examples on income are used to evaluate the applicability of these methods: the first example is the 2001 income data from the Panel Study of Income Dynamics (PSID) and the second example makes use of households’ median income for the USA by counties for the years 1999 and 2006
|
8 |
O Metodo das ordenadas discretas na solucao da equacao de transporte em geometria plana com dependencia azimutalCHALHOUB, EZZAT S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:42:57Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:08:16Z (GMT). No. of bitstreams: 1
06145.pdf: 4965019 bytes, checksum: afa11bbe0d27b123a27cffcd90fa9286 (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
|
9 |
O Metodo das ordenadas discretas na solucao da equacao de transporte em geometria plana com dependencia azimutalCHALHOUB, EZZAT S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:42:57Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:08:16Z (GMT). No. of bitstreams: 1
06145.pdf: 4965019 bytes, checksum: afa11bbe0d27b123a27cffcd90fa9286 (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
|
10 |
Improvements to the pool critical assembly benchmark using 3-D discrete ordinate transport with adaptive differenceEdgar, Christopher Austin 20 September 2013 (has links)
The internationally circulated Pool Critical Assembly (PCA) Pressure Vessel Benchmark was analyzed using the PENTRAN Parallel SN code system for the geometry, material, and source specifications as described in the PCA Benchmark documentation. Improvements to the benchmark are proposed through the application of more representative flux and volume weighted homogenized cross sections for the PCA reactor core, which were obtained from a rigorous heterogeneous modeling of all fuel assembly types in the core. A new source term definition is also proposed based on calculated relative power in each core fuel assembly with a spectrum based on the Uranium-235 fission spectra. This research focused on utilizing the BUGLE-96 cross section library and accompanying reaction rates, while examining both adaptive differencing on a coarse mesh basis, as well as the sole use of Directional Theta-Weighted (DTW) SN differencing scheme in order to compare the calculated PENTRAN results to measured data. The results show good comparison with the measured data, which suggests PENTRAN is a viable and reliable code system for calculation of light water reactor neutron shielding and dosimetry calculations. Furthermore, the improvements to the benchmark methodology resulting from this work provide a 6 percent increase in accuracy of the calculation (based on the average of all calculation points), when compared with experimentally measured results at the same spatial location in the PCA pressure vessel simulator.
|
Page generated in 0.0667 seconds