• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 40
  • 9
  • 9
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Molecular Mechanisms of Notochord Vacuole Formation and Their Role in Zebrafish Development

Ellis, Kathryn Leigh January 2014 (has links)
<p>The notochord plays critical structural and signaling roles during vertebrate development. At the center of the vertebrate notochord is a large fluid-filled organelle, the notochord vacuole. While these highly conserved intracellular structures have been described for decades, little is known about the molecular mechanisms involved in their biogenesis and maintenance. Here we show that zebrafish notochord vacuoles are specialized lysosome-related organelles whose formation and maintenance requires late endosomal trafficking regulated by the vacuole-specific Rab32a, and H+-ATPase-dependent acidification. We establish that notochord vacuoles are required for body axis elongation during embryonic development and identify a novel role for notochord vacuoles in spine morphogenesis. Thus, the vertebrate notochord plays important structural roles beyond early development.</p> / Dissertation
12

Import proteinů do mitosomů Giardia intestinalis / Protein Import into the Mitosomes of Giardia intestinalis

Martincová, Eva January 2012 (has links)
Mitochondrion is believed to be an ubiquitous organelle which occurred about 1,5 billion years ago by a single endosymbiotic event. Mitochondria is mostly dependent on the protein import from cytosol thus the establishment of protein import machinery was essential for seizing the new endosymbiont. Possibilities of studying the evolution of protein import machineries are quite limited given that no "free living" mitochondria or amitochondriate organisms are known nowadays. One alternative is to study mitochondrial secondary reductive evolution of anaerobic parasitic protists. Giardia intestinalis is flagellated protozoan living in microaerofilic environment of the small intestine. It containes one of the most reduced mitochondrion (mitosome) described so far. Hence it serves as a great model for studying mitochondrial evolution. Although it is well understood that all mitosomal proteins are transported from cytosol, many aspects of protein import pathway remain elusive. While the main channel Tom40 is present in the outer membrane, two other main translocases (Sam50 which is required for betta-barrel assembly in the outer membrane and Tim17/22/23 which is essential for protein translocation through the inner membrane) have not been identified so far. Protein translocation through Tim17/22/23 channel...
13

Altered Axon Initial Segment Structure and Function In Inflammatory Disease

Clark, Kareem C 01 January 2017 (has links)
Axonal pathology is a key contributor to long-term disability in multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS), but the mechanisms that underlie axonal insults remain unclear. While most axonal pathologies characterized in MS are a direct consequence of myelin loss, we propose that axonal pathologies also occur independent of demyelination. In support of this idea, we recently reported that mice that develop experimental autoimmune encephalomyelitis (EAE), a model commonly used to mimic the pathogenesis of MS, exhibit a structural and functional disruption of the axon initial segment (AIS), a subdomain of the axon that acts as the trigger-zone for action potential generation. Importantly, this disruption is independent of myelin loss. Although the mechanism responsible for AIS disruption remains unclear, we observed an attenuation of the AIS insult following treatment with a known scavenger of oxygen free radicals. To further investigate the role of oxidative stress in modulating AIS stability, we employed an in vitro model in which neurons were exposed to a spontaneous reactive oxygen and nitrogen species generator. Through this approach, we demonstrated that oxidative stress is capable of AIS modulation acting through induction of cytosolic calcium (Ca2+) influx from both extracellular and intracellular sources, resulting in calpain protease activation. Furthermore, because rises in intracellular Ca2+ are central to these and other mechanisms of AIS disruption, we next investigated the cisternal organelle (CO), an AIS-localized Ca2+-regulating structure. Although this organelle could prove to be central to AIS modulation, very little is known about the mechanisms regulating its stability. Through this line of investigation, we provide the first evidence of pathological alteration to the CO in a disease state. This disruption precedes loss of AIS protein clustering and axo-axonic GABAergic input in both EAE and MS postmortem tissue. Overall, these studies reveal a primary axonal insult, independent of myelin loss, in a disease classically characterized as a white-matter pathology. Instead, this insult is most likely driven by oxidative stress through local Ca2+ dysregulation at the AIS, providing novel therapeutic targets for MS.
14

The regulation of dynein function in membrane movement by NudEL

Yang, Yen Ching January 2014 (has links)
The accurate regulation of cytoplasmic dynein-1 (dynein) is very important since dynein performs multiple functions in cells. In interphase, dynein is responsible for the correct positioning of membrane organelles, such as the Golgi complex and lysosomes. Previous work suggests that dynein's accessory proteins NudEL/Nde1/LIS1¬ may be involved in regulating dynein-dependent organelle movement. This study focuses on how NudEL regulates dynein-driven membrane movement. By using various NudEL fragments, this work presents the first evidence that NudEL is involved in the regulation of dynein-driven ER movement in vitro. Moreover, the in vivo organelle positioning assays also indicate additional regulatory function of NudEL.NudEL fragment (1-157 aa) which contains both the dynein and LIS1 binding domains is sufficient to activate dynein-driven membrane movement, since NudEL1-157 aa activates ER motility in vitro and enhances clustering of the Golgi complex and lysosomes in the peri-nuclear region in vivo. On the other hand, NudEL 96-206 aa containing the LIS1 binding domain alone inhibits ER motility in vitro and causes scattering of the Golgi complex and lysosomes in vivo, indicating an inhibition of dynein-dependent organelle movement. The activation of dynein activity requires the recruitment of LIS1 to the dynein complex by NudEL, since NudEL 1-157 aa has strong binding affinity to both LIS1 and dynein whereas NudEL 96-206 aa binds to LIS1 but not dynein which suggests the sequestering of LIS1 from the dynein complex. Interestingly, NudEL 1-206 aa, which also contains both the dynein and LIS1 binding domains, causes the dispersal of the Golgi complex and lysosomes in vivo, but to a lesser extent than NudEL 96-206 aa. The putative NudEL regulatory domain (157 -242 aa, which contains various phosphorylation sits and is less conserved between NudEL and Nde1) in NudEL 1-206 aa may regulate the interaction of LIS1 and the dynein complex, since NudEL 1-206 aa has strong binding affinity to LIS1 and weak binding affinity to dynein. However, further work is needed to understand the exact mechanism by which this putative NudEL domain regulates dynein activity.
15

Targeted organelle genome assembly and heteroplamsy detection

Dierckxsens, Nicolas 16 October 2018 (has links)
Thanks to the development of next-generation sequencing (NGS) technology, whole genome data can be readily obtained from a variety of samples. Since the massive increase in available sequencing data, the development of efficient assembly algorithms has become the new bottleneck. Almost every new released tool is based on the De Brujin graph method, which focuses on assembling complete datasets with mathematical models. Although the decreasing sequencing costs made whole genome sequencing (WGS) the most straightforward and least laborious approach of gathering sequencing data, many research projects are only interested in the extranuclear genomes. Unfortunately, few of the available tools are specifically designed to efficiently retrieve these extranuclear genomes from WGS datasets. We developed a seed-and-extend algorithm that assembles organelle circular genomes from WGS data, starting from a single short seed sequence. The algorithm has been tested on several new (Gonioctena intermedia and Avicennia marina) and public (Arabidopsis thaliana and Oryza sativa) whole genome Illumina datasets and always outperformed other assemblers in assembly accuracy and contiguity. In our benchmark, NOVOPlasty assembled all genomes in less than 30 minutes with a maximum RAM memory requirement of 16 GB. NOVOPlasty is the only de novo assembler that provides a fast and straightforward manner to extract the extranuclear sequences from WGS data and generates one circular high quality contig.Heteroplasmy, the existence of multiple mitochondrial haplotypes within an individual, has been researched across different fields. Mitochondrial genome polymorphisms have been linked to multiple severe disorders and are of interest to evolutionary studies and forensic science. By utilizing ultra-deep sequencing, it is now possible to uncover previously undiscovered patterns of intra-individual polymorphism. However, it remains challenging to determine its source. Current available software can detect polymorphic sites but are not capable of determining the link between them. We therefore developed a new method to not only detect intra-individual polymorphisms within mitochondrial and chloroplast genomes, but also to look for linkage among polymorphic sites by assembling the sequence around each detected polymorphic site. Our benchmark study shows that this method can detect heteroplasmy more accurately than any method previously available and is the first tool that is able to completely or partially reconstruct the origin sequences for each intra-individual polymorphism. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
16

Electric Field Driven Migration and Separation in the Microenvironment

January 2020 (has links)
abstract: Novel electric field-assisted microfluidic platforms were developed to exploit unique migration phenomena, particle manipulation, and enhanced droplet control. The platforms can facilitate various analytical challenges such as size-based separations, and delivery of protein crystals for structural discovery with both high selectivity and sensitivity. The vast complexity of biological analytes requires efficient transport and fractionation approaches to understand variations of biomolecular processes and signatures. Size heterogeneity is one characteristic that is especially important to understand for sub-micron organelles such as mitochondria and lipid droplets. It is crucial to resolve populations of sub-cellular or diagnostically relevant bioparticles when these often cannot be resolved with traditional methods. Herein, novel microfluidic tools were developed for the unique migration mechanism capable of separating sub-micron sized bioparticles by size. This based on a deterministic ratchet effect in a symmetrical post array with dielectrophoresis (DEP) for the fast migration allowing separation of polystyrene beads, mitochondria, and liposomes in tens of seconds. This mechanism was further demonstrated using high throughput DEP-based ratchet devices for versatile, continuous sub-micron size particle separation with large sample volumes. Serial femtosecond crystallography (SFX) with X-ray free-electron lasers (XFELs) revolutionized protein structure determination. In SFX experiments, a majority of the continuously injected liquid crystal suspension is wasted due to the unique X-ray pulse structure of XFELs, requiring a large amount (up to grams) of crystal sample to determine a protein structure. To reduce the sample consumption in such experiments, 3D printed droplet-based microfluidic platforms were developed for the generation of aqueous droplets in an oil phase. The implemented droplet-based sample delivery method showed 60% less sample volume consumption compared to the continuous injection at the European XFEL. For the enhanced control of aqueous droplet generation, the device allowed dynamic triggering of droplets for further improvement in synchronization between droplets and the X-ray pulses. This innovative technique of triggering droplets can play a crucial role in saving protein crystals in future SFX experiments. The electric field-assisted unique migration and separation phenomena in microfluidic platforms will be the key solution for revolutionizing the field of organelle separation and structural analysis of proteins. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2020
17

A quantitative analysis of an average cultured neuron

Jähne, Sebastian 20 May 2019 (has links)
No description available.
18

Structure and Function of the Electron-dense Core in Mycoplasma pneumoniae and its Relatives

Hatchel, Jennifer M. 22 July 2009 (has links)
No description available.
19

Structure, Organization, and Function of the Terminal Organelle in Mycoplasma penetrans

Jurkovic, Dominika Angelika 04 September 2012 (has links)
No description available.
20

Charakterisierung von lipid droplet-Regulatoren der Fruchtfliege <i>Drosophila melanogaster</i> / Characterization of lipid droplet regulators of the fruit fly <i>Drosophila melanogaster</i>

Thiel, Katharina 31 May 2012 (has links)
No description available.

Page generated in 0.0327 seconds