• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 130
  • 30
  • 12
  • 11
  • 10
  • 7
  • 6
  • 6
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 233
  • 233
  • 160
  • 77
  • 67
  • 65
  • 64
  • 54
  • 36
  • 36
  • 36
  • 36
  • 32
  • 31
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Systèmes composites organogélateurs/polymères semi-conducteurs : de la preuve conceptuelle aux matériaux nanostructurés pour l'électronique plastique / Organogelators/semi-conducting polymers composites systems : from the conceptual proof to nanostructured materials for plastic electronic

Diebold, Morgane 15 January 2018 (has links)
L’amélioration des performances des dispositifs photovoltaïques organiques passe par le contrôle de la morphologie de leurs couches actives. Nous avons cherché à préparer une hétérojonction volumique donneur-accepteur nanostructurée en utilisant la nucléation hétérogène du poly (3-hexylthiophène) (P3HT, donneur) par des fibres d’organogélateurs à base de naphthalène diimide (NDI, accepteur). La première partie de ce travail présente l’étude des propriétés d’auto-assemblage d’organogélateurs à cœur NDI substitué par des groupements amides et des dendrons trialkoxyphényles. Nous avons évalué l’influence de la longueur de la chaîne flexible entre le cœur naphthalène et les groupements amides (2 liaisons C-C pour NDI2 et 4 pour NDI4) sur les propriétés physico-chimiques des organogélateurs. La seconde partie de ce travail met en évidence le polymorphisme du composé NDI2 en identifiant 4 polymorphes ainsi que leurs signatures optiques, spectroscopiques et structurales. Un diagramme de phase de l’état solide du NDI2 est proposé. La dernière partie de la thèse concerne l’élaboration de nano-composites donneur-accepteur entre les organogélateurs à cœur NDI et le P3HT. Le processus de formation en solution de ces nano-composites est analysé en suivant les cinétiques de cristallisation du P3HT par spectroscopie d’absorption UV-Visible et les morphologies obtenues (structures shish-kebab) par microscopie électronique en transmission. L’effet nucléant des organogélateurs sur le P3HT a été montré. Les études en cellules solaires des composés P3HT:PCBM : organogélateur ont prouvé que le rendement de conversion énergétique peut être augmenté en présence d’organogélateurs. / Improving the performances of organic photovoltaic devices requires morphology control of the active layers. Highly nanostructured donor-acceptor bulk heterojunctions were prepared by heterogeneous nucleation of poly (3-hexylthiophene) (P3HT, donor) on naphthalene diimide organogelators fibers (NDI, acceptor). The first part of this work was dedicated to the self-assembly of NDI-core organogelators substituted by amide groups and trialkoxyphenyls dendrons. We evaluated the influence of the flexible chain between the naphthalene core and the amide groups (2 C-C bonds for NDI2 and 4 for NDI4) on the physico-chemical properties of the organogelators.The second part of this work focused on the polymorphism of NDI2 with identification of four different polymorphs with their optical, spectroscopic and structural signatures. A phase diagram of NDI2 in the solid state was determined. The last part of this manuscript concerns the fabrication of donor-acceptor nano-composites between NDI organogelators and P3HT. The formation process in solution of these nano-composites was analyzed by following the crystallization kinetics of P3HT by UV-Vis absorption spectroscopy and the thin film morphology (shish-kebab structures) by transmission electron microscopy. The nucleating effect of various organogelators on P3HT was demonstrated. Solar cells were made from the composites P3HT:PCBM : organogelator and their energetic conversion yield was shown to be increased in the presence of organogelators.
202

Numerical simulation and optimisation of organic light emitting diodes and photovoltaic cells

Kozlowski, Fryderyk 26 November 2005 (has links)
A numerical model and results for the quantitative simulation of multilayer organic light emitting diode (OLED) and organic solar cell (OSC) are presented. In the model, effects like bipolar charge carrier drift and diffusion with field-dependent mobilities, trapping, dopants, indirect and direct bimolecular recombination, singlet Frenkel exciton diffusion, normal decay and quenching effects are taken into account. For an adequate description of multilayer devices with energetic barriers at interfaces between two adjacent organic layers, thermally assisted charge carrier hopping through the interface, interface recombination, and formation of interface charge transfer (CT) states have been introduced in the model. For the simulation of OSC, the generation of carrier pairs in the mixed layer or at the interface is additionally implemented. The light absorption profile is calculated from optical simulations and used as an input for the electrical simulation. The model is based on three elements: the Poisson equation, the rate equations for charge carriers and the rate equations for singlet Frenkel excitons. These equations are simultaeously solved by spatial and temporal discretisation using the appropriate boundary conditions and electrical parameters. The solution is found when a steady state is reached, as indicated by a constant value of current density. The simulation provides a detailed look into the distribution of electric field and concentration of free and trapped carriers at a particular applied voltage. For organic light emitting diodes, the numerical model helps to analyze the problems of different structures and provides deeper insight into the relevant physical mechanisms involved in device operation. Moreover, it is possible to identify technological problems for certain sets of devices. For instance, we could show that ? in contrast to literature reports - the contact between Alq3 and LiF/Al did not show ohmic behaviour for the series of devices. The role of an additional organic blocking layer between HTL and EML was presented. The explanation for the higher creation efficiency for singlet excitons in the three-layer structure is found in the separation of free holes and electrons accumulating close to the internal interface 1-Naphdata/Alq3. The numerical calculation has demonstrated the importance of controlled doping of the organic materials, which is a way to obtain efficient light emitting diodes with low operating voltage. The experimental results has been reproduced by numerical simulation for a series of OLEDs with different thicknesses of the hole transport layer and emitting layer and for doped emitting layers. The advantages and drawbacks of solar cells based on flat heterojunctions and bulk heterojunctions are analyzed. From the simulations, it can be understood why bulk-heterojunctions typically yield higher photocurrents while flat heterojunctions typically feature higher fill factors. In p-i-n ?structures, p and n are doped wide gap materials and i is a photoactive donor-acceptor blend layer using, e.g,. zinc phthalocyanine as a donor and C60 as an acceptor component. It is found that by introducing trap states, the simulation is able to reproduce the linear dependence of short circuit currents on the light intensity. The apparent light-induced shunt resistance often observed in organic solar cells can also be explained by losses due to trapping and indirect recombination of photogenerated carriers, which we consider a crucial point of our work. However, these two effects, the linear scaling of the photocurrent with light intensity and the apparent photoshunt, could also be reproduced when field-dependent geminate recombination is assumed to play a dominant role. First results that show a temperature independent short circuit photocurrent favour the model based on trap-mediated indirect recombination.
203

Studium optických vlastností tenkých vrstev organických fotovoltaických článků / Study of optical properties of thin films of organic photovoltaic cells

Čuboň, Tomáš January 2017 (has links)
This master´s thesis is focused on measurement of optical properties of thin layer of materials used in organic solar cells (OSC). The usage of graphene oxides and its reduced forms as parts of hole transport layer (HLT) in OSC were studied. At the beginning of the thesis, there is described basic theory necessary to understand the optical properties of thin layers. The thin layer deposition and reduction of GO are discussed too. The experimental part is aimed to the optical characterization of prepared thin films. The results from optical microscopy, UV-VIS spectroscopy, FT-IR spectroscopy and spectroscopic ellipsometry were obtained. At the end of the thesis, the results are concluded and compared with already published literature.
204

A dual-boron-cored luminogen capable of sensing and imaging

Fu, Yubin, Qiu, Feng, Zhang, Fan, Mai, Yiyong, Wang, Yingchao, Fu, Shibo, Tang, Ruizhi, Zhuanga, Xiaodong, Feng, Xinliang 19 December 2019 (has links)
A new dual-boron-cored luminogen ligated with a nitrogen-containing multidentate ligand and four bulky phenyl rings was readily synthesized. The unique molecular structure endows this BN-containing luminogen with rich photophysical properties in either solution or in the solid state, including a large Stokes shift, aggregation induced emission activity and reversible piezochromism. Furthermore, this BN-containing luminogen exhibits good capabilities for imaging living cells and sensing of fluoride anions.
205

Charakterisierung von organischen Solarzellen an einem neu aufgebauten Laser-basierten DSR-Messplatz

Fey, Thomas 22 September 2015 (has links)
Die Physikalisch-Technische Bundesanstalt (PTB) unterstützt vielfältig die Gesellschaft, Wirtschaft und Wissenschaft. Eine ihrer Kernkompetenzen als das nationale Metrologie-Institut der Bundesrepublik Deutschland ist die Messtechnik. In diesem Sinne kalibriert die Arbeitsgruppe „Solarzellen“ der PTB i. d. R. den Kurzschlussstrom unter Standardtestbedingungen (I_STC) von Referenzsolarzellen. Der I_STC von Referenzsolarzellen ist in Photovoltaik-Kalibrierketten bei der Bestimmung der Bestrahlungsstärke von zentraler Bedeutung und fließt signifikant in die Berechnung der Wirkungsgrad von Solarzellen und Solarmodulen ein. Um den I_STC einer Solarzelle mit geringster Messunsicherheit zu bestimmen, wurde die Differential Spectral Responsivity (DSR)-Methode verwendet. Sie basiert auf der Messung der differentiellen spektralen Empfindlichkeit bei unterschiedlichen Bestrahlungsstärken. Anhand dieser kann die absolute spektrale Empfindlichkeit s(λ) unter Standardtestbedingungen sowie der I_STC berechnet werden. Da jedoch die Umgebungsbedingungen meistens von den STC abweichen, reichen letztere nicht zum umfassenden Vergleich der Wirkungsgrade in der Praxis aus. Um Einflussfaktoren (Temperatur, Bestrahlungsstärke, Winkelabhängigkeit,...) genauer untersuchen zu können, wurde im Rahmen dieser Arbeit an der PTB ein neuer Laser-basierter DSR-Messplatz aufgebaut und charakterisiert. Mit dem neuen Messplatz wurden c-Si Referenzsolarzellen, organische Solarzellen auf Basis kleiner Moleküle sowie Farbstoffsolarzellen umfassend untersucht. Unter anderem wurden die elektrischen Leistungsparameter einer organischen Solarzelle (aktive Schicht: DCV5T-Me:C60) mit denen einer c-Si Solarzelle verglichen. Es zeigt sich, dass der Wirkungsgrad der organischen Solarzelle mit zunehmender Bestrahlungsstärke sinkt und mit zunehmender Temperatur steigt, während die c-Si Solarzelle ein gegensätzliches Verhalten aufweist. Darüber hinaus wurde u.a. die Winkelabhängigkeit der zweiten organischen Solarzelle (aktive Schicht: C60:DCV5T-Me(3,3)) untersucht und mit den Resultaten einer c-Si Solarzelle verglichen. Diese Untersuchungen haben ergeben, dass die Winkelabhängigkeit des Kurzschlussstroms der organischen Solarzelle im Vergleich zu einer c-Si Solarzelle insbesondere zwischen 20° < ϑ < 60° eine „Super-Kosinus-Anpassung“ aufweist. Ergänzend wurde an der PTB im Rahmen dieser Arbeit ein mobiler Messplatz für Outdoormessungen aufgebaut. Mit diesem konnten die mittels Indoor-Untersuchungen erhaltenen spektralen Empfindlichkeiten mit Outdoor-Messungen verglichen werden. Des Weiteren wurden spektrale Charakterisierungen der Himmelshalbkugel durchgeführt und Methoden für Korrekturen von Sekundärkalibrierungen untersucht.
206

Untersuchung von Multilagenbarrieren für die Verkapselung organischer Bauelemente

Dollinger, Felix 24 November 2015 (has links)
Elektronische Bauteile aus organischen Halbleitern stellen höchste Anforderungen an die Qualität der Verkapselung, die sie vor eindringenden Wasser- und Luftmolekülen schützt. Gleichzeitig soll diese preiswert und mechanisch flexibel sein. Diese Arbeit realisiert Aluminium-Mehrschichtsysteme als wirkungsvolle, biegsame und einfache Verkapselung. Es werden verschiedene Herstellungsmethoden und Zwischenschichtmaterialien untersucht, wobei die Barrierelamination als überlegenes Verfahren etabliert wird. Verkapselungssysteme werden mittels optischer Untersuchung und mit dem elektrischen Calciumtest auf ihre Güte geprüft, bevor sie in Solarzellenalterungsexperimenten unter realitätsnahen Bedingungen zur Anwendung kommen. Laminationsbarrieren aus Aluminiumdünnschichten zeigen reproduzierbar Wasserdampfdurchtrittsraten im unteren 10^(-4) g(H2O)/m^2/Tag-Bereich unter beschleunigten Permeationsbedingungen. Sie verlängern die T(50)-Lebensdauer von Solarzellen um einen Faktor 50 gegenüber unverkapselten Zellen auf Werte, die mit starrer Glas- oder zeitaufwendiger ALD-Verkapselung vergleichbar sind.:1. Einleitung 2. Grundlagen 2.1. Organische Halbleiter 2.2. Organische Photovoltaik 2.2.1. Aufbau und Funktion 2.2.2. Charakterisierung 2.3. Degradationsmechanismen in organischer Photovoltaik 2.3.1. Intrinsische Degradation 2.3.2. Extrinsische Degradation 2.4. Permeationsbarrieren 2.4.1. Wasserdampftransmissionsrate 2.4.2. Permeationsmechanismen 2.5. Vakuumabscheidung 2.5.1. Thermische Vakuumabscheidung 2.5.2. Dünnschichtwachstum 2.6. Calciumtest 2.6.1. Allgemeiner Aufbau 2.6.2. Mögliche Fehlerquellen beim Calciumtest 2.6.3. Optischer Calciumtest 2.6.4. Elektrischer Calciumtest 3. Experimentelle Methoden und Geräte 3.1. Substrate 3.2. Vakuumverdampfung 3.2.1. Evaporation System Königbau 3.2.2. Lesker-Verdampfungsanlage 3.3. Lamination 3.3.1. Epoxidharz Araldite 2011 3.3.2. Barrierekleber Tesa SE 3.3.3. Barrierekleber BK4a Fraunhofer 3.4. Elektrischer Calciumtest 3.4.1. Probenaufbau 3.4.2. Messapparatur 3.5. Solarzellencharakterisierung 3.5.1. Externe Quanteneffizienz 3.5.2. Strom-Spannungskennlinien 3.6. Klimaschrank 4. Ergebnisse und Diskussion 4.1. Defektradius von Aluminiumbarrieren 4.2. Keimschichten 4.3. Multilagenbarrieren 4.3.1. Vakuumprozessierte Zwischenschichten 4.3.2. Laminationsbarrieren 4.4. Integration von Calcium als Wasserfangstoff 4.5. Solarzellenalterung 4.5.1. Vergleich der Glasverkapselten Proben 4.5.2. Vergleich der Verkapselungstechniken 4.5.3. Vergleich der unverkapselten Proben: MoO3-, Cu-, Cr-Schichten 4.5.4. Degradation der Epoxidharzproben 4.5.5. Wirkungsgrad und Degradation der ALD-Proben 4.6. Vollflexible Solarzellen mit Laminationsbarriere 5. Zusammenfassung und Ausblick A. Anhang A.1. Abkürzungsverzeichnis A.2. Häufige Formelzeichen / Organic electronic devices require excellent encapsulation to protect them from intruding water- and air-molecules. At the same time, the encapsulation has to be inexpensive and flexible. This work presents aluminum multilayer barriers as highly effective, flexible and low-cost encapsulation. Various production methods and interlayer materials are investigated and barrier-lamination is established as superior process. Encapsulation systems are evaluated optically and by means of the electrical calcium-test, before they are employed in realistic solar cell aging experiments. Lamination-barriers of thin aluminum films show reproducible water-vapor transmission rates in the low 10^(-4) g(H2O)/m^2/day-range under accelerated permeation conditions. They improve the T(50)-lifetime of solar cells by a factor of 50 compared to unencapsulated cells, reaching values on par with rigid glass encapsulation or time-consuming atomic layer deposition.:1. Einleitung 2. Grundlagen 2.1. Organische Halbleiter 2.2. Organische Photovoltaik 2.2.1. Aufbau und Funktion 2.2.2. Charakterisierung 2.3. Degradationsmechanismen in organischer Photovoltaik 2.3.1. Intrinsische Degradation 2.3.2. Extrinsische Degradation 2.4. Permeationsbarrieren 2.4.1. Wasserdampftransmissionsrate 2.4.2. Permeationsmechanismen 2.5. Vakuumabscheidung 2.5.1. Thermische Vakuumabscheidung 2.5.2. Dünnschichtwachstum 2.6. Calciumtest 2.6.1. Allgemeiner Aufbau 2.6.2. Mögliche Fehlerquellen beim Calciumtest 2.6.3. Optischer Calciumtest 2.6.4. Elektrischer Calciumtest 3. Experimentelle Methoden und Geräte 3.1. Substrate 3.2. Vakuumverdampfung 3.2.1. Evaporation System Königbau 3.2.2. Lesker-Verdampfungsanlage 3.3. Lamination 3.3.1. Epoxidharz Araldite 2011 3.3.2. Barrierekleber Tesa SE 3.3.3. Barrierekleber BK4a Fraunhofer 3.4. Elektrischer Calciumtest 3.4.1. Probenaufbau 3.4.2. Messapparatur 3.5. Solarzellencharakterisierung 3.5.1. Externe Quanteneffizienz 3.5.2. Strom-Spannungskennlinien 3.6. Klimaschrank 4. Ergebnisse und Diskussion 4.1. Defektradius von Aluminiumbarrieren 4.2. Keimschichten 4.3. Multilagenbarrieren 4.3.1. Vakuumprozessierte Zwischenschichten 4.3.2. Laminationsbarrieren 4.4. Integration von Calcium als Wasserfangstoff 4.5. Solarzellenalterung 4.5.1. Vergleich der Glasverkapselten Proben 4.5.2. Vergleich der Verkapselungstechniken 4.5.3. Vergleich der unverkapselten Proben: MoO3-, Cu-, Cr-Schichten 4.5.4. Degradation der Epoxidharzproben 4.5.5. Wirkungsgrad und Degradation der ALD-Proben 4.6. Vollflexible Solarzellen mit Laminationsbarriere 5. Zusammenfassung und Ausblick A. Anhang A.1. Abkürzungsverzeichnis A.2. Häufige Formelzeichen
207

Exploring nanoscale properties of organic solar cells

Mönch, Tobias 19 November 2015 (has links)
The demand for electrical energy is steadily increasing. Highly efficient organic solar cells based on mixed, strongly absorbing organic molecules convert sunlight into electricity and, thus, have the potential to contribute to the worlds energy production. The continuous development of new materials during the last decades lead to a swift increase of power conversion efficiencies (PCE) of organic solar cells, recently reaching 12%. Despite these breakthroughs, the usage of highly complex organic molecules blended together to form a self-organised absorber layer results in complicated morphologies that are poorly understood. However, the morphology has a tremendous impact on the photon-to-electron conversion, affecting all processes ranging from light absorption to charge carrier extraction. This dissertation studies the role of phase-separation of the self-organised thin film blend layers utilized in organic solar cells. On the molecular scale, we manipulate the phase-separation, using different molecule combinations ranging from the well-known ZnPc:C 60 blend layers to highly efficient oligothiophene:C60 blend layers. On the macroscopic scale, we shape the morphology by depositing the aforementioned blend layers on differently heated substrates (in-vacuo substrate temperature, Tsub). To characterise the manufactured blend layers, we utilize high resolution microscopy techniques such as photoconductive atomic force microscopy, different electron microscopic techniques, X-ray microscopy etc., and various established and newly developed computational simulations to rationalise the experimental findings. This multi-technique, multi-scale approach fulfils the demands of several scientific articles to analyse a wide range of length scales to understand the underlying optoelectronic processes. Varying the mixing ratio of a ZnPc:C60 blend layer from 2:1 to 6:1 at fixed in vacuo substrate temperature results in a continuous increase of surface roughness, decrease of short-circuit current, and decrease of crystallinity. Additionally performed density functional theory calculations and 3D drift-diffusion simulations explain the observed crystalline ZnPc nanorod formation by the presence of C60 in the bulk volume and the in turn lowered recombination at crystalline ZnPc nanorods. Moving to oligothiophene:C60 blend layers used in highly efficient organic solar cells deposited at elevated substrate temperatures, we find an increase of phase-separation, surface roughness, decrease of oligothiophene-C60 contacts, and reduced disorder upon increasing Tsub from RT (PCE=4.5%) to 80 °C (PCE=6.8%). At Tsub =140 °C, we observe the formation of micrometer-sized aggregates on the surface resulting in inhomogeneous light absorption and charge carrier extraction, which in turn massively lowers the power conversion efficiency to 1.9%. Subtly changing the molecular structure of the oligothiophene molecule by attaching two additional methyl side chains affects the thin film growth, which is also dependent on the substrate type. In conclusion, the utilized highly sensitive characterisation methods are suitable to study the impact of the morphology on the device performance of all kinds of organic electronic devices, as we demonstrate for organic blend layers. At the prototypical ZnPc:C60 blend, we discovered a way to grow ZnPc nanorods from the blend layer. These nanorods are highly crystalline and facilitate a lowered charge carrier recombination which is highly desirable in organic solar cells. The obtained results at oligothiophene: C60 blends clearly demonstrate the universality of the multi-technique approach for an in-depth understanding of the fragile interplay between phase-separation and phase-connectivity in efficient organic solar cells. Overall, we can conclude that both molecular structure and external processing parameters affect the morphology in manifold ways and, thus, need to be considered already at the synthesis of new materials.
208

Transparent Silver Nanowire Bottom Electrodes in Organic Solar Cells

Bormann, Jan Ludwig 25 November 2016 (has links)
Organic solar cells (OSCs) is an emerging photovoltaic technology that opens up new application areas where common inorganic techniques are not able to score. Some of those key features are flexibility, light weight, semitransparency, and low cost processing. The current industry-standard for the transparent electrode, indium tin oxide (ITO), cannot provide these properties because it is brittle and expensive. This thesis aims to investigate an alternative type of promising transparent electrode: silver nanowire (AgNW) networks. They exhibit similar or even better optical and electrical performance than ITO down to a sheet resistance of 12 Ohm/sq at 84% transmission (including the glass substrate). Furthermore, AgNWs are more flexible, solution-processable, and more cost-effective than ITO. However, two challenges occur during implementation as bottom electrode in OSCs. First, their inherently high roughness causes devices to shunt. Second, the AgNW network structure exhibits – in contrast to the continuous ITO – µm²-sized voids that have to be bridged electrically by the organic layers. In the first part of this thesis, solution-processed small molecule charge transport layers are investigated. In the case of hole transport layers (HTL), the host BF-DPB and the dopant NDP9 are investigated using tetrahydrofuran as a solvent. It is shown that BF-DPB is already doped by NDP9 in solution via the formation of a hybrid molecule complex. Solution-processed layers exhibit similar conductivities as compared to the reference deposition, which is thermal evaporation in high vacuum. The layers sufficiently smoothen the AgNW electrode such that DCV5T-Me:C60 organic solar cells with an efficiency up to 4.4% are obtained. Moreover, the influence of the square micrometer large network voids is investigated using HTLs of varying conductivity. As a result, a minimum conductivity of 1e−4 S/cm is needed to avoid macroscopic performance losses. Equivalent circuit simulations are performed to confirm these results. As a second planarization method, the AgNWs are buried in an insulating polymer that serves concurrently as flexible and ultrathin substrate. Out of three different polymers tested, the optical adhesive ’NOA63’ gives the best results. The roughness is strongly reduced from 30 nm down to (2 ± 1) nm. Two different OSC types are employed as testing devices with fully-flexible alumina encapsulation against moisture ingress. Maximum power conversion efficiencies of 5.0% and 5.6% are achieved with a fullerene-free cascade layer architecture and a DCV5T-Me:C60 OSC, respectively. To evaluate the applicability of these fully-flexible and encapsulated devices, degradation studies are performed under continuous illumination and a humid climate. Although employing the intrinsically stable DCV5T-Me:C60 stack design, within one day a fast degradation of the fully-flexible solar cells is observed. The degradation is attributed to AgNW electrode failure that results from photo-oxidation and -sulfurization, photo-migration, and electromigration. It is further shown that the cascade organic solar cell lacks intrinsic stability. In summary, efficient, fully-flexible, and encapsulated devices are shown. However, in terms of competitive OSCs, the low stability of AgNW electrodes is a challenge to be taken care of. In current research, this issue needs to be addressed more frequently. / Organische Solarzellen (OSZ) sind ein junges Forschungsgebiet der Photovoltaik, welches neue Anwendungsgebiete erschließt, für die herkömmliche anorganische Solarzellen nicht einsetzbar sind. Einige der Haupteigenschaften sind Flexibilität, niedriges Gewicht, Teiltransparenz und geringe Herstellungskosten. Indiumzinnoxid (ITO), der aktuelle Industriestandard transparenter Elektrodentechnologie, ist nicht in der Lage, diese Eigenschaften zu gewährleisten. Dies liegt vor allem an der Brüchigkeit von ITO und der begrenzten Verfügbarkeit von Indium, welche mit einem hohen Preis einhergeht. Das Ziel dieser Dissertation ist die Integration einer alternativen und vielversprechenden Elektrodentechnologie: Netzwerke aus Silbernanodrähten (AgNWs). Mit einem Schichtwiderstand von 12 Ohm/sq bei einer Transmission von 84% (inklusive Glassubstrat) besitzen sie ähnliche oder sogar bessere optische und elektrische Eigenschaften als ITO. Des Weiteren sind AgNW-Elektroden flexibler und kostengünstiger als ITO und aus flüssiger Phase prozessierbar. Es gibt allerdings zwei Herausforderungen, welche die Integration als Grundelektrode in OSZ erschweren. Zum einen sind AgNW-Netzwerke sehr rauh, sodass organische Bauteile kurzgeschlossen werden. Zum anderen weisen AgNW-Elektroden, im Gegensatz zu einer vollflächigen ITO-Schicht, Lücken zwischen den einzelnen Drähten auf. Diese Lücken müssen von den organischen Schichten der OSZ elektrisch überbrückt werden. Im ersten Teil der Arbeit werden daher flüssigprozessierte Ladungsträgertransportschichten aus kleinen Molekülen untersucht, welche die AgNW-Elektroden glätten und die verhältnismäßig großen Lücken füllen sollen. Im Falle von Lochleitschichten (HTL) wird BF-DPB als Matrix und NDP9 als Dotand in Tetrahydrofuran gelöst und zur Anwendung gebracht. BF-DPB wird dabei schon in Lösung von NDP9 dotiert, wobei sich ein Hybridmolekülkomplex ausbildet. Die Leitfähigkeit der entstehenden Schichten ist ähnlich zu Referenzschichten, die durch thermisches Verdampfen im Hochvakuum hergestellt wurden. Die erhaltenen HTLs glätten die AgNW-Elektroden, sodass DCV5T-Me:C60-Solarzellen mit einer Effizienz von maximal 4.4% hergestellt werden können. Weiterhin wird der Einfluss der quadratmikrometergroßen Löcher auf die makroskopische Effizienz der Solarzelle in Abhängigkeit der HTL Leitfähigkeit untersucht. Um signifikante Effizienzverluste zu verhindern, muss der HTL eine minimale Leitfähigkeit von etwa 1e−4 S/cm aufweisen. Simulationen eines Ersatzschaltkreises bestätigen hierbei die experimentellen Ergebnisse. Im zweiten Teil der Arbeit wird eine Planarisierungsmethode untersucht, in welcher die AgNWs in nichtleitfähigen Polymeren eingebettet werden. Diese Polymere fungieren anschließend als flexibles Substrat. Der optische Kleber ”NOA63” erzielt hierbei die besten Ergebnisse. Die Rauheit der AgNW-Elektroden wird von etwa 30 nm auf 1 bis 3 nm stark reduziert. Anschließend werden diese AgNW-Elektroden in zwei unterschiedlichen OSZ Konfigurationen getestet und mit einer vollflexiblen Schicht aus Aluminiumoxid gegen Wasserdampfpermeation verkapselt. Somit können maximale Effizienzen von 5% mithilfe einer organischen Kaskadenstruktur und 5.6% mit DCV5T-Me:C60 OSZ erreicht werden. Um die Anwendbarkeit dieser vollflexiblen und verkapselten OSZ zu bewerten, werden Alterungsstudien unter konstanter Beleuchtung und feuchtem Klima durchgeführt. Es wird gezeigt, dass die in das Polymer eingebettete AgNW-Elektrode aufgrund von Photooxidation und -schwefelung und Photo- und Elektromigration instabil ist. Dieser Sachverhalt ist für die Anwendung von AgNW-Elektroden in kommerziellen OSZ von großer Bedeutung und wurde in der Forschung bisher nicht ausreichend thematisiert.
209

Encapsulation and stability of organic devices upon water ingress

Nehm, Frederik 22 April 2016 (has links)
Organic electronic devices like organic solar cells and organic light-emitting diodes quickly degrade in ambient conditions if left unprotected. High susceptibility to moisture necessitates their encapsulation. The maximum water ingress acceptable to achieve reasonable lifetimes ranges several orders of magnitudes below industrial flexible barrier solutions. In this work, an electrical Ca-Test is used to optimize and investigate moisture barriers towards their application in device encapsulation. Aside from substantial improvement of the measurement system, atomic layer deposited, sputtered, and thermally evaporated barriers are screened and their water vapor transmission rates measured down to 2*10^(-5) g(H2O)/(m²*d) at 38 °C and 90% RH. Completely new encapsulation techniques are presented using novel molecular layer deposition interlayers or lamination of independently processed barriers. This way, simple Al layers become high-end moisture barriers. Furthermore, different single layer barriers are exposed to a wide variety of climates. An in-depth analysis of water permeation mechanics reveals sorption governed by Henry's law as well as dominance of interface diffusion below the barrier at late test stages. Investigated moisture barriers are applied to organic light-emitting diodes as well as solar cells and great improvements of lifetimes are observed. In addition, significant improvements in stability towards water ingress are witnessed upon the integration of adhesion layers at the cathode interface. Lastly, the great potential and applicability of this technology is showcased by the production and aging of fully flexible, highly efficient, stable organic solar cells. / Organische Elektronik-Bauteile wie organische Solarzellen und organische Leuchtdioden degradieren in kürzester Zeit, wenn sie ungeschützt feuchter Luft ausgesetzt sind. Ihre starke Anfälligkeit gegenüber Wasserdampf macht ihre Verkapselung notwendig. Der maximale Wassereintritt, der für sinnvolle Lebensdauern noch zulässig erscheint, liegt jedoch noch mehrere Größenordnungen unter dem, was mit existierenden Technologien erreicht werden kann. In der vorliegenden Arbeit wird ein elektrischer Kalzium-Korrosionstest benutzt, um Barrieresysteme auf ihre Anwendbarkeit als Verkapselung organischer Bauelemente hin zu untersuchen und zu optimieren. Abgesehen von signifikanten Verbesserungen am Messsystem werden Wasserdampfbarrieren aus Atomlagenabscheidungs-, Kathodenzerstäubungs- und Verdampfungsprozessen vermessen. Dabei werden außerordentlich niedrige Wasserdampfdurchtrittsraten von nur 2*10^(-5) g(H2O)/(m²*d) in einem Alterungsklima von 38 °C und 90% relativer Feuchte verzeichnet. Vollkommen neue Verkapselungstechniken werden realisiert, wie etwa die Integration von Zwischenschichten durch Molekularlagenabscheidung oder die Lamination zweier Barrieren, die unabhängig voneinander prozessiert werden. Dieser Prozess verwandelt einfache Al Schichten in qualitativ hochwertige Wasserdampfbarrieren. Des Weiteren werden verschiedene Einzelschicht-Barrieren einer breiten Klimavariation ausgesetzt. Dies ermöglicht die genaue Analyse der Permeationsmechanismen des Wassers. Es wird gezeigt, dass Sorption hier dem Henry'sche Gesetz folgt. Diffusion entlang der Grenzfläche unterhalb der Barriere dominiert die Permeation zu späten Testzeiten. Die untersuchten Wasserdampfbarrieren werden an organischen Leuchtdioden und Solarzellen erprobt und zeigen große Verbesserungen bezüglich ihrer Lebensdauern. Darüber hinaus zeigt sich eine stark verbesserte Resistenz gegenüber Wassereintritt, wenn eine zusätzliche Adhäsionsschicht unter der Kathodengrenzfläche integriert wird. Letztendlich zeigt sich das große Potential und die Anwendbarkeit der Ergebnisse in der hohen Effizienz und langen Lebensdauer vollflexibler, verkapselter organischer Solarzellen.
210

Influence of processing conditions on morphology and performance of vacuum deposited organic solar cells

Holzmüller, Felix 30 March 2017 (has links)
This thesis discusses vacuum deposited organic solar cells. It focuses on the investigation of new donor molecules blended with the standard electron acceptor C60. These donor-acceptor heterojunctions form the photoactive system of organic solar cells. In addition, the influence of the processing conditions on the morphology of the blend layers is investigated, as the morphology is crucial for an efficient generation of free charge carriers upon photon absorption. Bulk heterojunction solar cells with the donor DTDCTB are deposited at different substrate temperatures. We identify three substrate temperature regimes, discriminated by the behavior of the fill factor (FF ) as a function of the blend layer thickness. Devices deposited at RT have a maximum FF between 50 and 70 nm blend thickness, while devices deposited at 110 °C have a monotonically decreasing FF. At Tsub=85 °C, the devices have an S-kinked current-voltage curve. Grazing incidence wide angle X-ray scattering measurements show that this peculiar behavior of the FF is not correlated with a change in the crystallinity of the DTDCTB, which stays amorphous. Absorption measurements show that the average alignment of the molecules inside the blend also remains unchanged. Charge extraction measurements (OTRACE) reveal a mobility for the 110 °C device that is an order of magnitude higher than for the RT device. The difference in mobility can be explained by a higher trap density for the RT samples as measured by impedance spectroscopy. Despite slightly higher carrier lifetimes for the RT device obtained by transient photovoltage measurements, its mobility-lifetime product is still lower than for the 110 °C devices. Based on DTDCTB, three new donor materials are designed to have a higher thermal stability in order to achieve higher yields upon material purification using gradient sublimation. For PRTF, the thermal stability is increased demonstrated by a higher yield upon sublimation. However, all new materials have a reduced absorption as compared to DTDCTB, which limits the short current density, and the FF is more sensitive to an increase of the blend layer thickness. The highest power conversion efficiency is achieved for a PRTF:C60 solar cell with 3.8%. Interestingly, PRTF:C60 solar cells show exceptionally low nonradiative voltage losses of only 0.26 V. Another absorber molecule is the push-pull chromophore QM1. Scanning electron microscope (SEM) measurements show a growth of the molecule in nanowires on several substrates. The nanowires have lengths up to several micrometers and are several tens of nanometers wide. The formation of the nanowires is accompanied by a strong blue shift (650 meV) of the thin film absorption spectrum in comparison to the absorption in solution, which is attributed to H-aggregation of the molecules. Furthermore, the thin film absorption onset reaches up to 1100 nm, making the material a suitable candidate for a near infrared absorber in organic solar cells. For a solar cell in combination with C60, a power conversion efficiency of 1.9% was achieved with an external quantum efficiency of over 19% for the spectral range between 600 and 1000 nm. The method of “co-evaporant induced crystallization” as a means to increase the crystallinity of blend layers without increasing the substrate temperature during the deposition is investigated. Mass spectrometry (LDI-ToF-MS) measurements show that polydimethylsiloxane (PDMS), which is used as a co-evaporant, decomposes during the evaporation and only lighter oligomers evaporate. Quartz crystal microbalance (QCM) measurements prove that the detection of PDMS saturates at higher amounts of evaporated material. LDI-ToF-MS measurements show further that the determination of the volatilization temperature by QCM measurements is highly error prone. The method was applied to zinc phthalocyanine (ZnPc) :C60 solar cells, accepting the insertion of PDMS into the blend layer. Diffraction (GIXRD) measurements show a large increase in crystallinity. ZnPc:C60 solar cells produced by applying the method reveal a similar behavior as solar cells processed at a higher substrate temperature.

Page generated in 0.0767 seconds