221 |
Etude du transport de charges dans les polymères semi-conducteurs à faible bande interdite et de son impact sur les performances photovoltaïques / Study of charge transport in low band-gap semiconducting polymers and its impact on phototovoltaic performancesFall, Sadiara 12 April 2013 (has links)
Le transport de charges dans une série de copolymères à faible bande interdite basés sur l'alternance de motifs riches en électrons (thiophène, thiénothiophène) et d‘unités déficients en électrons (benzothiadiazole) et dans leurs mélanges avec un dérivé du fullerène (PCBM-C60) a été étudié. Les polymères sont différenciés par la structure moléculaire de leur coeur conjugué et par la nature, la position et la densité de leurs chaines latérales. Dans les polymères purs, la mobilité a été étudiée en fonction de la densité de charges par le biais de l’analyses de caractéristiques électriques de transistors à effet de champ et de dispositifs à un seul type de porteurs dont le courant est limité par la charge d’espace. En utilisant le modèle de transport de charges développé par Vissenberg et al., nous avons pu estimer le degré de désordre dans le film organique et corréler le transport de charge avec le degré d’ordre structural mesuré par la diffraction des Rayons-X. Ces polymères ont été conçus pour être utilisés dans la couche active des cellules solaires organiques. Grâce à l’étude du transport de charges dans les mélanges à différents ratios massiques polymères:fullerène, nous avons mis en évidence l’effet considérable de la structure moléculaire sur le ratio optimal polymère:fullerène. Aussi, nous avons pu montrer que la nature des chaînes latérales joue un rôle important dans l’obtention d’un chemin de percolation optimal à la conduction des électrons. / The charge transport in a series of low band-gap copolymers based on the alternation of electron-rich units (thiophene, thienothiophene) and electron-deficient units (benzothiadiazole) and in their blends with a fullerene derivative (PCBM-C60) is investigated. The polymers are differentiated by the molecular structure of the conjugated backbone and by the nature, position and density of alkyl side chains. In pristine polymer films, the hole mobility has been investigated as a function of charge carrier density by analyzing the electrical response of field-effect transistors and single carrier spacecharge- limited current devices. By using the charge transport model developed by Vissenberg et al., we could quantify the structural disorder for the different polymers and correlate their degree of anisotropy with structural data obtained by Grazing Incidence Wide Angle X-ray diffraction. These polymers have been used in the active layer of organic solar cells. The ambipolar chargetransport was investigated in the corresponding polymer:fullerene blends. The results show that the side chains play a major role on the polymer: fullerene interactions and controls the optimal weight ratio. Also, we have shown that the nature of the side chains has a strong impact in the optimal electron conducting pathways.
|
222 |
Studium optoelektrických vlastností tenkých vrstev organických polovodičů na bázi ftalocyaninů / Study of optoelectrical properties of organic semiconductor thin film layers of phtalocyaninesMiklíková, Zdeňka January 2015 (has links)
Diploma thesis is focused on the study of optoelectric properties of thin layers of organic materials based on phthalocyanines, which can be used as an active layer of photovoltaic cells. Especially are studied the properties of the thin active layers of PdPc and PdPc + IL on the glass or ceramic substrates with aluminium contact, which are prepared by material printing here. On the prepared samples were first measured current-voltage characteristics in the dark and in the light and then were measured impedance spectrums in the dark. The received results will be used to improve the properties and structures of photovoltaic cells.
|
223 |
Akzeptorsubstituierte Oligothiophene und Fluorene für die Anwendung in organischen SolarzellenWrackmeyer, Marion Sofia 08 July 2011 (has links)
In der vorliegenden Arbeit wurden Thiophenoligomere nach dem Konzept Akzeptor – Donator – Akzeptor (A-D-A) und Donator – Akzeptor – Donator (D-A-D) synthetisiert und umfassend charakterisiert. Oligothiophene unterschiedlicher Kettenlänge stellen dabei den Donatoranteil des Moleküls dar, während 2,2-Dicyanovinyle (DCV), 1,3,2-2H-Dioxaborine (DOB), 2,1,3-Benzothiadiazole (BTDA) die Akzeptorstruktur im Molekül repräsentieren.
Diese Materialien sollen als Absorber in der intrinsischen Schicht von organischen Solarzellen (OSC) eingesetzt werden. Zusätzliche Untersuchungen an DOB-substituierten Fluorenen, die als Elektronentransportmaterialien in der n-Schicht von OSC Anwendung finden sollten, erwiesen sich in diesem Fall nicht als vielversprechend. Alle untersuchten Verbindungen wurden, abhängig von ihrer Löslichkeit bzw. Verdampfbarkeit im Vakuum, durch Absorption in Lösung und im dünnen Film, durch Cyclovoltammetrie (CV) und durch DFT-Rechnung charakterisiert. Die thermische Stabilität wurde durch TG/DTA-Messungen untersucht. Die Ladungsträgerbeweglichkeit der DCV-Verbindungen wurde in organischen Feldeffekttransistoren untersucht, sowie Solarzellen mit verschiedenen Schichtdicken der Quinquethiophenverbindung DCV2-5T als Donatormaterial der intrinsischen Schicht angefertigt. Eine gezielte Modifikation der Verbindungen durch Wahl des Akzeptors und die Länge des aromatischen Systems ermöglichte die Synthese von Molekülen mit abstimmbaren Eigenschaften. Eine bathochrome Verschiebung des Absorptionsmaximums kann durch eine Vergrößerung des π-Systems erreicht werden. CV-Messungen und DFT-Rechnungen zeigen, dass E(LUMO) maßgeblich vom Akzeptor bestimmt wird, während E(HOMO) mehr durch den Donatorteil des Moleküls beeinflusst wird. Diese Eigenschaften sind unabhängig vom Aufbau (A-D-A oder D-A-D) der Verbindungen. Bezüglich der thermischen Stabilität sind die D-A-D – Verbindungen gegenüber den A-D-A – Verbindungen zu favorisieren. Ein weiterer wichtiger Schlüsselpunkt der Arbeit ist die Erkenntnis, dass die bisher verwendeten Alkylketten am Rückgrat des Oligothiophens die Löcherbeweglichkeit der Verbindungen stark herabsetzen. Zwei Solarzellen in einer m-i-p– Anordnung (Metall – intrinsisch – p-dotiert) erreichen mit dem DCV2-5T (Schichtdicke 6 bzw. 10 nm) als Donatormaterial eine Effizienz von 2.8 %. Die Zellen zeichnen sich durch einen hohen Füllfaktor (bis zu 58 %) aus und erreichen eine Leerlaufspannung von bis zu 1.03 V. Die Interpretation der J-V-Kennlinien führt zu der Annahme, dass die Exzitonendiffusionslänge kürzer als 10 nm ist, weswegen es bei einer höheren Schichtdicke des Thiophens zu einer Rekombination der erzeugten Exzitonen kommt.:Abstract 1
Kurzfassung 2
Tagungsbeiträge und Veröffentlichungen 3
1 Einleitung und Problemstellung 5
2 Physikalische Grundlagen 9
2.1 Organische Halbleiter 9
2.2 Aufbau und Funktionsweise organischer Solarzellen 11
2.3 Wichtige Parameter zur Charakterisierung organischer Solarzellen 16
2.4 Messmethoden zur Bestimmung der Grenzorbitale 17
2.4.1 Cyclovoltammetrie (CV) 17
2.4.2 DFT-Rechnungen 22
3 Motivation 25
4 Bisheriger Kenntnisstand 29
4.1 Absorbermaterialien der intrinsischen Schicht 29
4.1.1 Phthalocyanine (MPc (M = Zn, Cu)) 29
4.1.2 Oligothiophene 31
4.1.3 Fulleren C60 33
4.2 n-Leiter 35
4.2.1 Fulleren C60 (dotiert) 35
4.2.2 Bathophenanthrolin (BPhen) und Bathocuproin (BCP) 36
4.2.3 Transparenter n-Leiter: Naphthalentetracarboxyl Dianhydrid (NTCDA) 38
4.3 „Bandgap engineering“ – Zusammenspiel zwischen Donator und Akzeptor 39
4.3.1 Dicyanovinyle 41
4.3.2 1,3,2-(2H)-Dioxaborine 41
4.3.3 2,1,3-Benzothiadiazole 43
4.4 Thiophene 44
4.4.1 Ringaufbauende Reaktionen 44
4.4.2 Substitutionsmöglichkeiten am Thiophen 47
4.4.3 Übergangsmetallkatalysierte Kupplungsreaktionen zum Aufbau von
Oligothiophenketten 48
4.5 Fluorene 49
5 Ergebnisse und Diskussion 51
5.1 Akzeptorsubstituierte Oligothiophene 51
5.1.1 Akzeptor-Donator-Akzeptor-Strukturen 51
5.1.1 Donator-Akzeptor-Donator-Strukturen 57
5.2 Fluorene 64
5.3 Unsymmetrische Donator-Akzeptor-Verbindungen mit neuen Akzeptoren – Ausgangspunkt für zukünftige Forschung 65
5.4 Auswertung und Vergleich physikalischer Messungen 66
5.4.1 Absorptionsmessungen in Lösung und im Film 66
5.4.2 Ergebnisse aus Cyclovoltammetrie-Messungen 75
5.4.3 Ergebnisse aus DFT-Rechnungen 85
5.4.4 Thermogravimetrie und Differentialthermoanalyse-Messungen 91
5.4.5 Beweglichkeitsmessungen 104
5.4.6 Eintragung der erhaltenen Ergebnisse ins Spinnennetzdiagramm und ihre Bewertung 107
5.4.7 Solarzelle mit DCV2-5T 116
6 Zusammenfassung und Ausblick 121
6.1 Zusammenfassung 121
6.2 Ausblick 123
7 Experimenteller Teil 125
7.1 Allgemeine Angaben 125
7.2 Synthese und Charakterisierung der akzeptorsubstituierten Oligomere 128
7.3 Synthese und Charakterisierung der Fluorenverbindungen 160
7.4 Synthese und Charakterisierung unsymmetrischer Donator-Akzeptor-Verbindungen mit neuen Akzeptoren 167
8 Anhang 173
8.1 Abkürzungs- und Trivialnamenverzeichnis 173
8.2 Literaturverzeichnis 176
Danksagung 181
Versicherung 183 / The present thesis deals with thiophene oligomers according to the concept acceptor-donor-acceptor (A-D-A) or donor-acceptor-donor (D-A-D). Thiophenes represent the donor-part of the molecule whereas the acceptor-part can either be 2,2-dicyanovinyle (DCV), 1,3,2-2H-dioxaborine (DOB) or 2,1,3-benzothiadiazole (BTDA). These materials are supposed to work as absorbers in the intrinsic layer of an organic small molecular solar cell (OSC). Additional studies on substituted fluorenes, however, known to work as electron transport material in the n-layer of OSC, have not proved promising in this case. Depending on their solubility in organic solvents or their suitability for vacuum sublimation, all compounds were characterised by absorption measurements in solution and thin film, cyclic voltammetry (CV) and DFT-calculations. The thermal stability was determined by thermal analysis. Charge carrier mobility measurements using organic field effect transistors were applied to investigate the DCV-compounds. The quinquethiophene DCV2-5T was used in varying thicknesses as a donor material in the intrinsic absorbing layer of an OSC. Systematic variation of the compounds by applying different accepting groups and/or modifying the lengths of the aromatic systems permitted the synthesis of molecules with tunable properties. A bathochromic shift of the absorption maximum can be achieved by increasing the number of thiophene units. CV measurements and DFT calculations reveal a dependency of E(LUMO) on the accepting group whereas E(HOMO) is more influenced by the donor part of the molecule. These properties are independent from the concept A-D-A or D-A-D. Concerning thermal stability, D-A-D compounds seem to be more stable than A-D-A materials. Another important point is the knowledge that alkyl chains used so far at the backbone of the oligothiophene chain significantly decrease the hole mobility. Two OSCs arranged in an m-i-p-stack (metal – intrinsic – p-doped) with the quinquethiophene DCV2-5T (layer thickness 6 and 10 nm) both reach an efficiency of 2.8 %. They show a high fillfactor (up to 58 %) and reach an open circuit voltage of 1.03 V. Interpretation of the other parameters leads to the assumption that the exciton diffusion length of the molecule is shorter than 10 nm. This results in a recombination of the excitons in the cell with the thicker layer of DCV2-5T.:Abstract 1
Kurzfassung 2
Tagungsbeiträge und Veröffentlichungen 3
1 Einleitung und Problemstellung 5
2 Physikalische Grundlagen 9
2.1 Organische Halbleiter 9
2.2 Aufbau und Funktionsweise organischer Solarzellen 11
2.3 Wichtige Parameter zur Charakterisierung organischer Solarzellen 16
2.4 Messmethoden zur Bestimmung der Grenzorbitale 17
2.4.1 Cyclovoltammetrie (CV) 17
2.4.2 DFT-Rechnungen 22
3 Motivation 25
4 Bisheriger Kenntnisstand 29
4.1 Absorbermaterialien der intrinsischen Schicht 29
4.1.1 Phthalocyanine (MPc (M = Zn, Cu)) 29
4.1.2 Oligothiophene 31
4.1.3 Fulleren C60 33
4.2 n-Leiter 35
4.2.1 Fulleren C60 (dotiert) 35
4.2.2 Bathophenanthrolin (BPhen) und Bathocuproin (BCP) 36
4.2.3 Transparenter n-Leiter: Naphthalentetracarboxyl Dianhydrid (NTCDA) 38
4.3 „Bandgap engineering“ – Zusammenspiel zwischen Donator und Akzeptor 39
4.3.1 Dicyanovinyle 41
4.3.2 1,3,2-(2H)-Dioxaborine 41
4.3.3 2,1,3-Benzothiadiazole 43
4.4 Thiophene 44
4.4.1 Ringaufbauende Reaktionen 44
4.4.2 Substitutionsmöglichkeiten am Thiophen 47
4.4.3 Übergangsmetallkatalysierte Kupplungsreaktionen zum Aufbau von
Oligothiophenketten 48
4.5 Fluorene 49
5 Ergebnisse und Diskussion 51
5.1 Akzeptorsubstituierte Oligothiophene 51
5.1.1 Akzeptor-Donator-Akzeptor-Strukturen 51
5.1.1 Donator-Akzeptor-Donator-Strukturen 57
5.2 Fluorene 64
5.3 Unsymmetrische Donator-Akzeptor-Verbindungen mit neuen Akzeptoren – Ausgangspunkt für zukünftige Forschung 65
5.4 Auswertung und Vergleich physikalischer Messungen 66
5.4.1 Absorptionsmessungen in Lösung und im Film 66
5.4.2 Ergebnisse aus Cyclovoltammetrie-Messungen 75
5.4.3 Ergebnisse aus DFT-Rechnungen 85
5.4.4 Thermogravimetrie und Differentialthermoanalyse-Messungen 91
5.4.5 Beweglichkeitsmessungen 104
5.4.6 Eintragung der erhaltenen Ergebnisse ins Spinnennetzdiagramm und ihre Bewertung 107
5.4.7 Solarzelle mit DCV2-5T 116
6 Zusammenfassung und Ausblick 121
6.1 Zusammenfassung 121
6.2 Ausblick 123
7 Experimenteller Teil 125
7.1 Allgemeine Angaben 125
7.2 Synthese und Charakterisierung der akzeptorsubstituierten Oligomere 128
7.3 Synthese und Charakterisierung der Fluorenverbindungen 160
7.4 Synthese und Charakterisierung unsymmetrischer Donator-Akzeptor-Verbindungen mit neuen Akzeptoren 167
8 Anhang 173
8.1 Abkürzungs- und Trivialnamenverzeichnis 173
8.2 Literaturverzeichnis 176
Danksagung 181
Versicherung 183
|
224 |
Studies on Organic Solar Cells Composed of Fullerenes and Zinc-PhthalocyaninesPfützner, Steffen 30 January 2012 (has links)
This work deals with the investigation and research on organic solar cells. In the first part of this work we focus on the spectroscopical and electrical characterization of the acceptor molecule and fullerene derivative C70. In combination with the donor molecule zinc-phthalocyanines (ZnPc) we investigate C70 in flat and bulk heterojunction solar cells and compare the results with C60 as acceptor. The stronger and spectral broader thin film absorption of C70 and thus enhanced contribution to photocurrent as well as the similar electrical properties with respect to C60 result in higher power conversion efficiencies. In the second part, modifications of the blend layer morphology of a C60:ZnPc bulk heterojunction solar cell are considered. Using substrate heating during co-deposition of acceptor and donor, the molecular arrangement is influenced. Due to the additional thermal energy at the substrate the blend layer morphology is improved and optimized for a substrate heating temperature of 110°C. With transmission electron microscopy, molecular phase separation of C60 and ZnPc and the formation of polycrystalline ZnPc domains in a lateral dimension on the order of 50 nm are detected. Mobility measurements show an increased ZnPc hole mobility in the heated blend layer. The improved charge carrier percolation and transport are confirmed by the enhanced performance of such bulk heterojunction solar cells. Furthermore, we show a strong influence of the pre-deposited p-doped hole transport layer on the molecular phase separation. In the third part, we study the dependency of the open circuit voltage on the mixing ratio of C60 and ZnPc in bulk heterojunction solar cells. For the different mixing ratios we determine the ionization potentials of C60 and ZnPc. Over the various C60:ZnPc blends from 1:3 - 6:1, the ionization potentials change linearly, but different from each other and exhibit a correlation to the change in open circuit voltage. Depending on the mixing ratio an intrinsic ZnPc layer adjacent to the blend leads to
injection barriers which result in reduced open circuit voltage. We hence determine a voltage loss dependent on ZnPc layer thickness and barrier height.:Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 15
2 History, Fundamentals, and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Organic semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Photovoltaic principle and organic solar cells . . . . . . . . . . . . . . . . . ... . . 42
2.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 61
3 Materials & Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63
3.1 Organic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63
3.1.1 Standard photoactive materials . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63
3.1.2 Transport materials and dopants . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . 67
3.1.3 Material purification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 Sample preparation and vacuum tools . . . . . . . . . . . . . . . . . . . . . . . . .. . 70
3.2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 70
3.2.2 Vacuum tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 70
3.2.3 Substrates and layer stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 73
3.3 Solar cell characterization tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 77
3.3.1 J(V)-measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.2 EQE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4 Further characterization tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 79
3.4.1 UPS and XPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 79
3.4.2 OFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 81
3.4.3 AFM, SEM, TEM, and WAXRD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.4.4 Optical Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.5 Simulation and modeling software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.5.1 Optical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.5.2 Electrical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4 Results: C70 as acceptor molecule for organic solar cells . . . . . . . . . . . . . . 85
4.1 Optical characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Mobility measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 88
4.3 Ultraviolet photoelectron spectroscopy . . . . . . . . . . . . . . . . . . . . . . .. . . 89
4.4 p-i-i flat heterojunction solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 90
4.4.1 Di-NPD/fullerene flat heterojunction solar cells . . . . . . . . . . . . . . . . . . 90
4.4.2 ZnPc/fullerene flat heterojunction solar cells . . . . . . . . . . . . . . . . . . . . 91
4.5 p-i-i bulk heterojunction solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.5.1 p-i-i mixed C60:C70:ZnPc bulk heterojunction solar cell . . . . . . . . . . . 99
4.6 Outlook: fullerene C84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 101
5 Results: Bulk heterojunction solar cells deposited on heated substrates . 103
5.1 150 nm thick C60:ZnPc blend layers in m-i-p bulk heterojunctions . . . . 103
5.2 60 nm thick C60:ZnPc blend layers in m-i-p bulk heterojunctions . . . . . 107
5.2.1 AFM and SEM measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2.2 Absorption measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2.3 X-Ray (WAXRD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 113
5.2.4 TEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 116
5.2.5 OFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 119
5.2.6 C70:ZnPc m-i-p bulk-heterojunctions . . . . . . . . . . . . . . . . . . . . . . .. . 121
5.3 p-i-i bulk heterojunction solar cells deposited at 110°C . . . . . . . . . . . . 124
5.3.1 Influence of sublayer on blend layer morphology . . . . . . . . . . . . . . . . 128
6 Results: On the influence of Voc in p-i-i bulk heterojunction solar cells . . 137
6.1 Dependency of Voc on C60:ZnPc mixing ratio . . . . . . . . . . . . . . . . . . . . 137
6.2 Influence of different hole transport layers on C60:ZnPc . . . . . . . . . .. . 140
6.2.1 Red and blue illumination measurements . . . . . . . . . . . . . . . . . . . . . . 143
6.2.2 Optical characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.2.3 UPS measurements for different C60:ZnPc mixing ratios . . . . . . . . .. 148
6.3 Influence of thin ZnPc and C70 interlayers on Voc . . . . . . . . . . . . . . .. . 152
6.3.1 UPS measurements of blend/ZnPc interfaces . . . . . . . . . . . . . . . . . . . 155
6.3.2 Blend/ZnPc injection barrier: experiment and simulation . . . . . . . . . . 158
7 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 / Diese Arbeit beschäftigt sich mit der Untersuchung und Forschung an organischen Solarzellen und gliedert sich in drei Teile. Im ersten Teil wird auf die spektroskopische und elektrische Charakerisierung des Fullerenderivates C70 eingegangen, welches als Akzeptormolekül in Kombination mit dem Donormolekül Zink-Phthalocyanin (ZnPc) in Flach- und Mischschichtheteroübergänge organischer Solarzellen Anwendung findet. Dabei wird das Molekül mit dem bisherigen Standard Akzeptormolekül C60 verglichen. Die deutlich stärkere und spektral verbreiterte Dünnschichtabsorption von C70, sowie die vergleichbaren elektrischen Eigenschaften zu C60 führen zu einer Effizienzsteigerung in den Flach- und Mischschichtsolarzellen, welche maßgeblich durch die Erhöhung des Kurzschlussstromes erreicht wird. Im zweiten Teil widmet sich diese Arbeit der Morphologiemodifizierung des Mischschichtsystems C60:ZnPc, welche durch Heizen des Substrates während der Mischverdampfung von Akzeptor- und Donormolekülen in organischen Mischschichtsolarzellen erreicht werden kann. Es wird gezeigt, dass mit der zusätzlichen Zufuhr thermischer Energie über das Substrat die Anordnung der Moleküle in der Mischschicht beeinflusst werden kann. Unter Verwendung eines Transmissionselektronmikroskops lässt sich für die Mischschicht mit der optimalen Solarzellensubstrattemperatur von 110°C eine Phasenseparation von C60 und ZnPc unter Ausbildung von polykristallinen ZnPc Domänen in der lateralen Dimension von 50 nm nachweisen. Mit zusätzlichen Messungen der Ladungsträgerbeweglichkeiten des Mischschichtsystems kann die verbesserte Perkolation und Löcherbeweglichkeit von ZnPc für die Steigerung der Performance geheizter Solarzellen bestätigt werden. Desweiteren wird gezeigt, dass die Ausbildung einer Phasenseparation sehr stark von der darunter liegenden Molekülschicht z.B. der p-dotierte Löchertransportschicht abhängig ist. Im letzten und dritten Teil geht die Arbeit auf die Abhängigkeit der Klemmspannung von der Mischschichtkonzentration von C60 und ZnPc ein. Für die unterschiedlichen Volumenkonzentrationen von C60:ZnPc zwishen 6:1 und 1:6 kann gezeigt werden, dass sich die Ionisationspotentiale von C60 und ZnPc über einen großen Bereich linear und voneinander verschieden verändern und mit den absoluten Änderung der offenenen Klemmspannung korrelieren. Desweiteren wird gezeigt, dass sich durch eine zusätzlich an die Mischschicht angrenzende intrinsische ZnPc Schicht, abhängig von der Mischschichtkonzentration, Injektionsbarrieren ausbilden, welche nachweislich einen Spannungsverlust bedingen. Dabei kann gezeigt werden, dass der Spannungsverlust mit der ZnPc Schichtdicke und der Barrierenhöhe korreliert.:Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 15
2 History, Fundamentals, and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Organic semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Photovoltaic principle and organic solar cells . . . . . . . . . . . . . . . . . ... . . 42
2.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 61
3 Materials & Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63
3.1 Organic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63
3.1.1 Standard photoactive materials . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63
3.1.2 Transport materials and dopants . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . 67
3.1.3 Material purification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 Sample preparation and vacuum tools . . . . . . . . . . . . . . . . . . . . . . . . .. . 70
3.2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 70
3.2.2 Vacuum tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 70
3.2.3 Substrates and layer stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 73
3.3 Solar cell characterization tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 77
3.3.1 J(V)-measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.2 EQE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4 Further characterization tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 79
3.4.1 UPS and XPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 79
3.4.2 OFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 81
3.4.3 AFM, SEM, TEM, and WAXRD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.4.4 Optical Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.5 Simulation and modeling software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.5.1 Optical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.5.2 Electrical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4 Results: C70 as acceptor molecule for organic solar cells . . . . . . . . . . . . . . 85
4.1 Optical characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Mobility measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 88
4.3 Ultraviolet photoelectron spectroscopy . . . . . . . . . . . . . . . . . . . . . . .. . . 89
4.4 p-i-i flat heterojunction solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 90
4.4.1 Di-NPD/fullerene flat heterojunction solar cells . . . . . . . . . . . . . . . . . . 90
4.4.2 ZnPc/fullerene flat heterojunction solar cells . . . . . . . . . . . . . . . . . . . . 91
4.5 p-i-i bulk heterojunction solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.5.1 p-i-i mixed C60:C70:ZnPc bulk heterojunction solar cell . . . . . . . . . . . 99
4.6 Outlook: fullerene C84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 101
5 Results: Bulk heterojunction solar cells deposited on heated substrates . 103
5.1 150 nm thick C60:ZnPc blend layers in m-i-p bulk heterojunctions . . . . 103
5.2 60 nm thick C60:ZnPc blend layers in m-i-p bulk heterojunctions . . . . . 107
5.2.1 AFM and SEM measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2.2 Absorption measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2.3 X-Ray (WAXRD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 113
5.2.4 TEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 116
5.2.5 OFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 119
5.2.6 C70:ZnPc m-i-p bulk-heterojunctions . . . . . . . . . . . . . . . . . . . . . . .. . 121
5.3 p-i-i bulk heterojunction solar cells deposited at 110°C . . . . . . . . . . . . 124
5.3.1 Influence of sublayer on blend layer morphology . . . . . . . . . . . . . . . . 128
6 Results: On the influence of Voc in p-i-i bulk heterojunction solar cells . . 137
6.1 Dependency of Voc on C60:ZnPc mixing ratio . . . . . . . . . . . . . . . . . . . . 137
6.2 Influence of different hole transport layers on C60:ZnPc . . . . . . . . . .. . 140
6.2.1 Red and blue illumination measurements . . . . . . . . . . . . . . . . . . . . . . 143
6.2.2 Optical characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.2.3 UPS measurements for different C60:ZnPc mixing ratios . . . . . . . . .. 148
6.3 Influence of thin ZnPc and C70 interlayers on Voc . . . . . . . . . . . . . . .. . 152
6.3.1 UPS measurements of blend/ZnPc interfaces . . . . . . . . . . . . . . . . . . . 155
6.3.2 Blend/ZnPc injection barrier: experiment and simulation . . . . . . . . . . 158
7 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
|
225 |
Excited State Properties in Dicyanovinyl-Oligothiophene Donor Materials for Small Molecule Organic Solar CellsZiehlke, Hannah 27 February 2012 (has links)
Key issues in improving small molecule organic solar cells (SMOSC) are the need for new absorber materials and optimized active layer morphology. This thesis deals with the improvement of SMOSC on the donor material side. Promising donor materials (D) are provided by dicyanovinyl endcapped oligothiophenes DCV2-nT (n = 3, . . . , 6) synthesized in the group of Prof. Bäuerle at the University of Ulm. Here, DCV2-nT (n = 3, 5) with different alkyl side chains are characterized. Side chain variations mainly influence the aggregation of molecules in pristine films as well as in blend films with the commonly used acceptor (A) fullerene C60. With changes in the layer morphology, important physical properties in thin film like absorption spectra, energy levels, as well as excited state properties are changed. The focus of this work are excited state properties accessed by photoinduced absorption spectroscopy (PIA). PIA probes the long living excited states in pristine and blend films, i. e. triplet excitons, anions, and cations.
For a series of four dicyanovinyl-terthiophenes DCV2-3T (without side chains, with two methyl, two butyl, and four butyl side chains) a systematic study of the effect of alkyl side chains on the aggregation in neat and blend film is discussed. In consequence the efficiency of the energy transfer mechanism between DCV2-3T and C60 is affected. It turns out that in solution spectra and cyclic voltammetry (CV) measurements, the variation of alkyl side chains has almost no influence. However, in thin film there is strong impact on the molecular arrangement confirmed by strongly varying absorption spectra, ionization potentials, and surface roughnesses. Furthermore, PIA measurements reveal that the energy transfer efficiency between D and A in general decreases with increasing side chain length, but is most efficient for a compound with methyl side chains.
For blends of dicyanovinyl-quinquethiophenes (DCV2-5T) with C60, the layer morphology is influenced by two different methods. On one hand substrate heating is applied while deposition of the active layer, on the other hand DCV2-5Ts with different alkyl side chains (four methyl and four butyl side chains) are used. Deposition on a heated substrate (80°C) results in an improved solar cell performance, assigned to the formation of a sufficient phase separation of D and A phase in the active layer. This leads to reduced recombination losses and closed percolation paths. The morphological change can be correlated to an increased lifetime of cations. In blends deposited on a heated substrate, the donor cation lifetime increases by almost one order of magnitude from around 10 μs to ≈ 80 μs. This increase of carrier lifetime is both detected optically by PIA as well as electrically by impedance spectroscopy. The increase in lifetime is consequently assigned to a better spatial separation of positive and negative charges induced by the phase separation.
Comparing DCV2-5T with methyl and butyl side chains results in a similar effect: The dicyanovinyl-quinquethiophene with methyl side chains leads to an improved solar cell device performance compared to devices comprising the compound with butyl side chains as donor. The improved device performance is again accompanied by an increase in cation lifetime detected by PIA.:Contents
Publications
1. Introduction
2. Organic semiconductors
2.1. Introduction
2.2. Optical excitations in organic semiconductors
2.2.1. Energy levels: single molecules to molecular solids
2.2.2. Absorption and emission spectra
2.3. Transport in organic semiconductors
2.3.1. Exciton motion
2.3.2. Charge transport
2.3.3. Amorphous organic semiconductors
3. Organic photovoltaics
3.1. Introduction
3.2. Solarenergyconversion
3.2.1. Quasi Fermi levels
3.2.2. p-n junction
3.3. Organic solar cells
3.3.1. Charge generation mechanisms
4. Experimental methods
4.1. Sample preparation
4.2. Photoinduced absorption spectroscopy
4.2.1. PIA setup
4.2.2. Recombination dynamics
4.3. Solar cell characterization
4.3.1. External quantum efficiency
4.3.2. J-V characteristics
4.4. Absorption and emission spectroscopy
4.5. Determination of energy levels
4.5.1. Ultraviolet photo electron emission spectroscopy
4.5.2. Cyclic voltammetry
4.6. Atomic force microscopy
4.7. Density functional theory calculations
4.8. Impedance spectroscopy
5. Dicyanovinyl-oligothiophenes
5.1. Introduction
5.2. The DCV2-nT:C60 interface
5.3. Processability
6. Side chain variations on DCV2-3T
6.1. Introduction
6.2. Density functional theory calculations
6.2.1. Excited state transitions
6.3. Absorption and Emission in solution and thin film
6.3.1. Blend layer absorption spectra
6.3.2. Photoluminescence spectra of neat and blend films
6.4. Energy levels of the DCV2-3T series
6.5. Atomic force microscopy
6.6. Photoinduced absorption spectroscopy
6.6.1. PIA signatures of charged states
6.6.2. Recombination dynamics
6.6.3. Efficiency of the ping pong effect
6.7. Conclusion
7. Influencing the morphology of DCV2-5T:C60 blend layers
7.1. Introduction
7.2. Properties of the DCV2-5T:C60 interface
7.2.1. Analysis of the DCV2-5T triplet transition
7.2.2. Analysis of the DCV2-5T cation transitions
7.2.3. Suggested energy level scheme for neat and blend layer
7.3. Temperature evolution of excited state properties
7.4. Effect of substrate heating on excited state lifetime and generation rate
7.4.1. Solar cell devices
7.4.2. Photoinduced absorption
7.4.3. Impedance spectroscopy
7.5. Conclusion
8. Side chain variations on DCV2-5T
8.1. Introduction
8.2. Atomic force microscopy
8.3. Energy levels
8.4. Mip solar cells
8.4.1. Flat heterojunctions
8.4.2. Bulk heterojunctions
8.4.3. Discussion of Voc
8.5. Photoinduced absorption
8.5.1. Comparison at room temperature
8.6. Conclusion
9. Conclusion and Outlook
9.1. Conclusion
9.2. Outlook
A. Appendix
Bibliography / Die Entwicklung neuer Absorber-Materialien sowie die Morphologie der photo- aktiven Schicht sind zentrale Themen hinsichtlich der Optimierung organischer Solarzellen aus kleinen Molekülen. In der vorliegenden Arbeit werden diese beiden Aspekte von Seiten des Donor-Materials (D) her behandelt. Die Material- klasse der Dicyanovinyl-Oligothiophene DCV2-nT(n=3,...,6) (synthetisiert in der Arbeitsgruppe von Prof. Bäuerle an der Universität Ulm) dient dabei als Ausgangspunkt. Insbesondere werden DCV2-nT-Moleküle (n = 3, 5) mit verschiedenen Alkyl-Seitenketten charakterisiert. Die Variation der Seitenketten beeinflusst in erster Linie die Anordnung der Moleküle in Einzel- sowie in Mischschichten mit dem typischerweise verwendeten Akzeptor-Material Fulleren C60 (A). Als Folge der Schichtmorphologie ändern sich physikalische Eigenschaften wie u. a. Absorptions- spektren, Energieniveaus sowie die Eigenschaften angeregter Zustände. Angeregte Zustände, wie Triplett-Exzitonen, Anionen und Kationen werden in dieser Arbeit mittels photoinduzierter Absorptionsspektroskopie (PIA) charakterisiert.
Anhand einer Serie von vier Dicyanovinyl-Tertiophenen DCV2-3T (ohne Seiten- ketten, mit zwei Methyl-, zwei Butyl-, und vier Butyl-Seitenketten) werden systematisch Einflüsse der Seitenketten auf die Aggregation der Moleküle in Einzel- und Mischschichten untersucht. Besonderes Augenmerk liegt dabei auf dem Effekt der Seitenketten auf den Energie-Transfer-Mechanismus zwischen D und A. In Lösungsmittelspektren und Cyclovoltammetrie-Messungen ist fast keine Änderung durch die Seitenketten erkennbar. Im Dünnfilm hingegen besteht ein starker Einfluss auf die molekulare Anordnung, erkennbar in einer starken Variation der Absorptionsspektren, Ionisationspotentiale und Oberflächen-Topographie. PIA- Messungen zeigen weiterhin, dass im Allgemeinen die Effizienz des Energie-Transfer- Mechanismus mit zunehmender Länge der Alkyl-Ketten abnimmt. Der effizienteste Transfer besteht jedoch für die Verbindung mit Methyl-Seitenketten.
In Mischschichten aus Dicyanovinyl-Quinquethiophenen (DCV2-5T) und C60 werden hier zwei Methoden zur Beeinflussung der Schichtmorphologie verfolgt. Zum einen wird die aktive Schicht auf einem geheizten Substrat abgeschieden, zum anderen werden DCV2-5T-Moleküle mit Methyl- und Butyl-Seitenketten als Donor verwendet. Das Abscheiden der aktiven Schicht auf einem geheizten Substrat (80 °C) führt zu einer verbesserten Solarzellenleistung, was auf die Bildung einer hin- reichenden Phasenseparation von D- und A-Phasen in der aktiven Schicht zurückzuführen ist. Die Phasenseparation bewirkt eine Reduktion von Rekombinationsverlusten und die Bildung geschlossener Perkolationspfade. Die morphologische Änderung korreliert mit einem Anstieg der Ladungsträger-Lebensdauer um fast eine Größenordnung von etwa 10 μs auf ≈ 80 μs. Der Anstieg kann sowohl optisch durch
PIA, als auch elektrisch mittels Impedanz-Spektroskopie detektiert werden. Eine höhere Lebensdauer der Ladungsträger kann letztlich auf eine größere räumlichen Separation der positiven und negativen Ladungsträger zurückgeführt werden, induziert durch die Phasenseparation.
Ein Vergleich von DCV2-5T-Molekülen mit Methyl- und Butyl-Seitenketten führt zu ähnlichen Resultaten: Solarzellen mit DCV2-5T substituiert mit Methyl- Seitenketten sind effizienter als die der butyl-substituierten Moleküle. Dies korreliert wiederum mit einer signifikant erhöhten Lebensdauer der Ladungsträger in Mischschichten der methyl-substituierten Verbindung.:Contents
Publications
1. Introduction
2. Organic semiconductors
2.1. Introduction
2.2. Optical excitations in organic semiconductors
2.2.1. Energy levels: single molecules to molecular solids
2.2.2. Absorption and emission spectra
2.3. Transport in organic semiconductors
2.3.1. Exciton motion
2.3.2. Charge transport
2.3.3. Amorphous organic semiconductors
3. Organic photovoltaics
3.1. Introduction
3.2. Solarenergyconversion
3.2.1. Quasi Fermi levels
3.2.2. p-n junction
3.3. Organic solar cells
3.3.1. Charge generation mechanisms
4. Experimental methods
4.1. Sample preparation
4.2. Photoinduced absorption spectroscopy
4.2.1. PIA setup
4.2.2. Recombination dynamics
4.3. Solar cell characterization
4.3.1. External quantum efficiency
4.3.2. J-V characteristics
4.4. Absorption and emission spectroscopy
4.5. Determination of energy levels
4.5.1. Ultraviolet photo electron emission spectroscopy
4.5.2. Cyclic voltammetry
4.6. Atomic force microscopy
4.7. Density functional theory calculations
4.8. Impedance spectroscopy
5. Dicyanovinyl-oligothiophenes
5.1. Introduction
5.2. The DCV2-nT:C60 interface
5.3. Processability
6. Side chain variations on DCV2-3T
6.1. Introduction
6.2. Density functional theory calculations
6.2.1. Excited state transitions
6.3. Absorption and Emission in solution and thin film
6.3.1. Blend layer absorption spectra
6.3.2. Photoluminescence spectra of neat and blend films
6.4. Energy levels of the DCV2-3T series
6.5. Atomic force microscopy
6.6. Photoinduced absorption spectroscopy
6.6.1. PIA signatures of charged states
6.6.2. Recombination dynamics
6.6.3. Efficiency of the ping pong effect
6.7. Conclusion
7. Influencing the morphology of DCV2-5T:C60 blend layers
7.1. Introduction
7.2. Properties of the DCV2-5T:C60 interface
7.2.1. Analysis of the DCV2-5T triplet transition
7.2.2. Analysis of the DCV2-5T cation transitions
7.2.3. Suggested energy level scheme for neat and blend layer
7.3. Temperature evolution of excited state properties
7.4. Effect of substrate heating on excited state lifetime and generation rate
7.4.1. Solar cell devices
7.4.2. Photoinduced absorption
7.4.3. Impedance spectroscopy
7.5. Conclusion
8. Side chain variations on DCV2-5T
8.1. Introduction
8.2. Atomic force microscopy
8.3. Energy levels
8.4. Mip solar cells
8.4.1. Flat heterojunctions
8.4.2. Bulk heterojunctions
8.4.3. Discussion of Voc
8.5. Photoinduced absorption
8.5.1. Comparison at room temperature
8.6. Conclusion
9. Conclusion and Outlook
9.1. Conclusion
9.2. Outlook
A. Appendix
Bibliography
|
226 |
Device Physics of Organic Solar Cells: Drift-Diffusion Simulation in Comparison with Experimental Data of Solar Cells Based on Small MoleculesTress, Wolfgang 26 April 2012 (has links)
This thesis deals with the device physics of organic solar cells. Organic photovoltaics (OPV) is a field of applied research which has been growing rapidly in the last decade leading to a current record value of power-conversion efficiency of 10 percent. One major reason for this boom is a potentially low-cost production of solar modules on flexible (polymer) substrate. Furthermore, new application are expected by flexible or semitransparent organic solar cells. That is why several OPV startup companies were launched in the last decade.
Organic solar cells consist of hydrocarbon compounds, deposited as ultrathin layers (some tens of nm) on a substrate. Absorption of light leads to molecular excited states (excitons) which are strongly bound due to the weak interactions and low dielectric constant in a molecular solid. The excitons have to be split into positive and negative charges, which are subsequently collected at different electrodes. An effective dissociation of excitons is provided by a heterojunction of two molecules with different frontier orbital energies, such that the electron is transfered to the (electron) acceptor and the positive charge (hole) remains on the donor molecule. This junction can be realized by two distinct layers forming a planar heterojunction or by an intermixed film of donor and acceptor, resulting in a bulk heterojunction. Electrodes are attached to the absorber to collect the charges by providing an ohmic contact in the optimum case.
This work focuses on the electrical processes in organic solar cells developing and employing a one-dimensional drift-diffusion model. The electrical model developed here is combined with an optical model and covers the diffusion of excitons, their separation, and the subsequent transport of charges. In contrast to inorganics, charge-carrier mobilities are low in the investigated materials and charge transport is strongly affected by energy barriers at the electrodes.
The current-voltage characteristics (J-V curve) of a solar cell reflect the electrical processes in the device. Therefore, the J-V curve is selected as means of comparison between systematic series of simulation and experimental data. This mainly qualitative approach allows for an identification of dominating processes and provides microscopic explanations.
One crucial issue, as already mentioned, is the contact between absorber layer and electrode. Energy barriers lead to a reduction of the power-conversion efficiency due to a decrease in the open-circuit voltage or the fill factor by S-shaped J-V curve (S-kink), which are often observed for organic solar cells. It is shown by a systematic study that the introduction of deliberate barriers for charge-carrier extraction and injection can cause such S-kinks. It is explained by simulated electrical-field profiles why also injection barriers lead to a reduction of the probability for charge-carrier extraction. A pile-up of charge carriers at an extraction barrier is confirmed by measurements of transient photocurrents. In flat heterojunction solar cells an additional reason for S-kinks is found in an imbalance of electron and hole mobilities. Due to the variety of reasons for S-kinks, methods and criteria for a distinction are proposed. These include J-V measurements at different temperatures and of samples with varied layer thicknesses.
Most of the studies of this this work are based on experimental data of solar cells comprisiing the donor dye zinc phthalocyanine and the acceptor fullerene C60. It is observed that the open-circuit voltage of these devices depends on the mixing ratio of ZnPc:C60. A comparison of experimental and simulation data indicates that the reason is a changed donor-acceptor energy gap caused by a shift of the ionization potential of ZnPc. A spatial gradient in the mixing ratio of a bulk heterojunction is also investigated as a donor(acceptor)-rich mixture at the hole(electron)-collecting contact is supposed to assist charge extraction. This effect is not observed, but a reduction of charge-carrier losses at the “wrong” electrode which is seen at an increase in the open-circuit voltage.
The most important intrinsic loss mechanism of a solar cell is bulk recombination which is treated at the example of ZnPc:C60 devices in the last part of this work. An examination of the dependence of the open-circuit voltage on illumination intensity shows that the dominating recombination mechanism shifts from trap-assisted to direct recombination for higher intensities. A variation of the absorption profile within the blend layer shows that the probability of charge-carrier extraction depends on the locus of charge-carrier generation. This results in a fill factor dependent on the absorption profile. The reason is an imbalance in charge-carrier mobilities which can be influenced by the mixing ratio.
The work is completed by a simulation study of the influence of charge-carrier mobilities and different recombination processes on the J-V curve and an identification of a photoshunt dominating the experimental linear photocurrent-voltage characteristics in reverse bias.:Abstract - Kurzfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
1 Introduction
1.1 Energy supply and climate change . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Development of (organic) photovoltaics . . . . . . . . . . . . . . . . . . 3
1.3 Structure and scope of this thesis . . . . . . . . . . . . . . . . . . . . . . 6
I Basics
2 Photovoltaic Energy Conversion
2.1 Fundamentals of solar thermal energy conversion . . . . . . . . . . .11
2.1.1 The solar spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Black-body irradiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
2.1.3 Maximum power-conversion efficiency . . . . . . . . . . . . . . . . . 15
2.2 Basics of semiconductor physics . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Band structure, electrons and holes . . . . . . . . . . . . . . . . . . 16
2.2.2 Quasi-Fermi levels and electrochemical potentials . . . . . . . . . .22
2.3 Transformation of thermal radiation into chemical energy . . . . . 28
2.4 From chemical energy to electrical energy . . . . . . . . . . . .. . . . . 29
2.5 Possible solar-cell realizations . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.1 The p-n junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.2 Heterojunction and dye solar cells . . . . . . . . . . . . . . . . . . . . 36
2.5.3 The p-i-n concept with wide-gap transport layers . . . . . . . . . 37
2.6 Maximum efficiency – Shockley-Queisser limit . . . . . . . . . . . . . .38
2.7 Novel concepts and classification of solar cells . . . . . . . . . . . . . 41
3 Organic Solar Cells
3.1 Energetics of organic molecules . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.1 From atoms to molecules . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.2 From single molecules to a molecular solid . . . . . . . . . . . . . . 50
3.2 Energy and charge transport in organic semiconductors . . . . . . 52
3.2.1 Exciton transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.2 Charge transport - Gaussian disorder model . . . . . . . . . . . . .53
3.3 Working principle of donor-acceptor heterojunction solar cells . .57
3.3.1 Particle losses, quantum efficiency, and photocurrent . . . . . . .57
3.3.2 Energy losses, potential energy, and photovoltage . . . . . . . . 62
3.3.3 Maximum power-conversion efficiency . . . . . . . . . . . . . . . . . 66
3.3.4 Understanding the J-V curve in the MIM picture . . . . . . . . . . .68
3.3.5 Introduction to analytical models describing the photocurrent 70
3.4 Metal-organic interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4.1 Conventional metal-semiconductor interfaces: Barriers and Schottky
contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4.2 Metal-organic interfaces: Disorder and ICT . . . . . . . . . . . . . . 79
3.5 Experimental realization of small-molecule solar cells . . . . . . . . 80
3.5.1 Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.5.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
3.5.3 Fabrication details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.6 Basic characterization methods . . . . . . . . . . . . . . . . . . . . . . . 92
3.6.1 Current-voltage characteristics . . . . . . . . . . . . . . . . . . . . . . 92
3.6.2 Spectrally resolved measurements . . . . . . . . . . . . . . . . . . . 93
3.6.3 Transient measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4 Modeling
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2 The drift-diffusion model in general . . . . . . . . . . . . . . . . . . . . 99
4.2.1 Derivation and conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.2 The Einstein Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
4.2.3 Poisson’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.4 Differential equation system . . . . . . . . . . . . . . . . . . . . . . . .105
4.3 Implementation of the algorithm . . . . . . . . . . . . . . . . . . . . . . 106
4.3.1 Basics of the algorithm and discretization . . . . . . . . . . . . . . 107
4.3.2 Calculation of the electric field . . . . . . . . . . . . . . . . . . . . . . 108
4.3.3 Calculation of rates of change . . . . . . . . . . . . . . . . . . . . . . 109
4.3.4 Calculation of the time step . . . . . . . . . . . . . . . . . . . . . . . . 111
4.3.5 Detection of steady state and transient currents . . . . . . . . . 111
4.4 Implemented models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.4.1 Charge carrier mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.4.2 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.4.3 Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.4.4 Gaussian density of states . . . . . . . . . . . . . . . . . . . . . . . . 120
4.5 Contacts as boundary conditions . . . . . . . . . . . . . . . . . . . . . 121
4.6 Organic-organic interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.6.1 Charge transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.6.2 Generation and recombination . . . . . . . . . . . . . . . . . . . . . . 127
4.7 The simulation tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.8 Verification with analytical solutions . . . . . . . . . . . . . . . . . . . 129
4.8.1 Single-carrier devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.8.2 The p-n junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.9 Experimental determination of material properties . . . . . . . . . 136
4.10 Summary and main input parameters . . . . . . . . . . . . . . . . . 140
II Results and Discussion
5 Simulation Study on Single-Layer Bulk-Heterojunction Solar Cells
5.1 Investigated device structure and definitions . . . . . . . . . . . . . 144
5.2 On the optimum mobility, contact properties, and the open-circuit
voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146
5.2.2 Investigated mobility and recombination models . . . . . . . . . .147
5.2.3 Recombination only in the BHJ (selective contacts) . . . . . . . . 149
5.2.4 Recombination (also) at electrodes (non-selective contacts) . .155
5.2.5 Injection barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
5.2.6 Effect of energy-level bending on the open-circuit voltage . . . 161
5.3 Photocurrent and characteristic points in simulated J-V curves . .163
5.3.1 Negligible bulk recombination . . . . . . . . . . . . . . . . . . . . . . . .164
5.3.2 Bulk-recombination-limited photocurrent . . . . . . . . . . . . . . . 167
5.4 The effect of disorder on the open-circuit voltage . . . . . . . . . . .169
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172
6 Influence of Injection and Extraction Barriers on Open-Circuit Voltage and
J-V Curve Shape studied at a Variation of Hole Transport Layer and Donor
Materials
6.1 Methodological approach . . . . . . . . . . . . . . . . . . . . . . . . . . . .174
6.2 Current-voltage data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.2.1 Fingerprints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.2.2 Current-voltage characteristics under illumination . . . . . . . . . 181
6.3 Detailed microscopic explanations . . . . . . . . . . . . . . . . . . . . . .181
6.3.1 Injection barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184
6.3.2 Extraction barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187
6.3.3 Comparison between flat and bulk heterojunction . . . . . . . . . 188
6.4 Current-voltage curves in a logarithmic plot . . . . . . . . . . . . . . .188
6.5 Detailed analysis of the material combination MeO-TPD and BPAPF as
donor and hole transport layer . . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.5.1 The interfaces BPAPF/MeO-TPD and MeO-TPD/BPAPF measured
by photoelectron spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.5.2 Dependence of the J-V curve shape on layer thicknesses . . . . 195
6.5.3 Dependence of the S-kink on temperature . . . . . . . . . . . . . . 198
6.5.4 Transient measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 200
6.6 Summary and final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 207
7 Imbalanced Mobilities causing S-shaped J-V Curves in Planar Heterojunction
Solar Cells
7.1 Imbalanced mobilities in simulation . . . . . . . . . . . . . . . . . . . . . 209
7.2 Experimental verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
7.2.1 Current-voltage characteristics . . . . . . . . . . . . . . . . . . . . . . 216
7.2.2 Transient photocurrents . . . . . . . . . . . . . . . . . . . . . . . . . . 219
7.3 Field-dependent exciton dissociation as an additional source of
S-kinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
8 Open-Circuit Voltage and J-V Curve Shape of ZnPc:C60 Solar Cells with Varied
Mixing Ratio and Hole Transport Layer
8.1 Experimental approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
8.2 The open-circuit voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . .225
8.3 The role of the hole transport layer and of doping . . . . . . . . . .228
8.4 Explaining the open-circuit voltage as a function of mixing ratio 230
8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
9 Effect of Concentration Gradients in ZnPc:C60 Bulk Heterojunction Solar Cells
9.1 Investigated devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
9.2 Current-voltage results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
9.2.1 Fill factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
9.2.2 Short-circuit current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
9.2.3 Open-circuit voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
9.3 Voltage dependent external quantum efficiency data . . . . . . . . 245
9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247
10 Role of the Generation Profile and Recombination in ZnPc:C60 Solar Cells
10.1 Idea and solar-cell design . . . . . . . . . . . . . . . . . . . . . . . . . . 249
10.1.1 Absorption data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
10.1.2 Simulated generation profiles . . . . . . . . . . . . . . . . . . . . . . 253
10.2 Correlation of fill factor with generation profile and imbalance in
mobilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
10.2.1 Current-voltage data . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
10.2.2 Monochromatic J-V curves . . . . . . . . . . . . . . . . . . . . . . . . 258
10.2.3 Voltage dependent external quantum efficiency . . . . . . . . . 259
10.3 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
10.3.1 Exponential region of dark J-V curves . . . . . . . . . . . . . . . . 261
10.3.2 J-V data dependent on illumination intensity . . . . . . . . . . . 265
10.3.3 Lifetime of charge carriers . . . . . . . . . . . . . . . . . . . . . . . . 271
10.4 Comparison with simulations . . . . . . . . . . . . . . . . . . . . . . . . 273
10.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
11 Linear Saturation Behavior
11.1 Definition of the photoshunt . . . . . . . . . . . . . . . . . . . . . . . . 279
11.2 Quasi-linear photocurrent in simulation . . . . . . . . . . . . . . . . 280
11.3 Experimental approach and results . . . . . . . . . . . . . . . . . . . 281
11.3.1 Identification of the main source of the photoshunt . . . . . . 283
11.3.2 Investigation of the thickness dependence of the saturation 285
11.3.3 Photoshunt in flat heterojunction ZnPc/C60 solar cells . . . . 289
11.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
III Summary and Outlook
12 Main Results
12.1 Interpretation of current-voltage curves . . . . . . . . . . . . . . . . 295
12.2 Stack design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
12.3 Main conclusions on the applicability of the developed drift-diffusion
simulation to organic solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . 302
13 Further Analyses and Possible Extensions of the Simulation
13.1 Frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
13.2 Reverse tunneling currents and tandem cells . . . . . . . . . . . . . 307
13.2.1 Reverse current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
13.2.2 J-V curves of tandem cells . . . . . . . . . . . . . . . . . . . . . . . . 309
13.3 Further points to examine . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Appendix
A Lists
A.1 List of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
A.2 List of abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
A.3 List of constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
B Simulation data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
C Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Acknowledgments - Danksagung 361 / Diese Dissertation beschäftigt sich mit der Physik organischer Solarzellen. Die organische Photovoltaik ist ein Forschungsgebiet, dem in den letzten zehn Jahren enorme Aufmerksamkeit zu Teil wurde. Der Grund liegt darin, dass diese neuartigen Solarzellen, deren aktueller Rekordwirkungsgrad bei 10 Prozent liegt, ein Potential für eine kostengünstige Produktion auf flexiblem (Polymer)substrat aufweisen und aufgrund ihrer Vielfältigkeit neue Anwendungsbereiche für die Photovoltaik erschließen.
Organische Solarzellen bestehen aus ultradünnen (einige 10 nm) Schichten aus Kohlenwasserstoffverbindungen. Damit der photovoltaische Effekt genutzt werden kann, müssen die durch Licht angeregten Molekülzustände zu freien Ladungsträgern führen, wobei positive und negative Ladung an unterschiedlichen Kontakten extrahiert werden. Für eine effektive Trennung dieser stark gebundenden lokalisierten angeregten Zustände (Exzitonen) ist eine Grenzfläche zwischen Molekülen mit unterschiedlichen Energieniveaus der Grenzorbitale erforderlich, sodass ein Elektron auf einem Akzeptor- und eine positive Ladung auf einem Donatormolekül entstehen. Diese Grenzschicht kann als planarer Heteroübergang durch zwei getrennte Schichten oder als Volumen-Heteroübergang in einer Mischschicht realisiert werden. Die Absorberschichten werden durch Elektroden kontaktiert, wobei es für effiziente Solarzellen erforderlich ist, dass diese einen ohmschen Kontakt ausbilden, da ansonsten Verluste zu erwarten sind.
Diese Arbeit behandelt im Besonderen die elektrischen Prozesse einer organischen Solarzelle. Dafür wird ein eindimensionales Drift-Diffusionsmodell entwickelt, das den Transport von Exzitonen, deren Trennung an einer Grenzfläche und die Ladungsträgerdynamik beschreibt. Abgesehen von den Exzitonen gilt als weitere Besonderheit einer organischen Solarzelle, dass sie aus amorphen, intrinsischen und sehr schlecht leitfähigen Absorberschichten besteht.
Elektrische Effekte sind an der Strom-Spannungskennlinie (I-U ) sichtbar, die in dieser Arbeit als Hauptvergleichspunkt zwischen experimentellen Solarzellendaten und den Simulationsergebnissen dient. Durch einen weitgehend qualitativen Vergleich können dominierende Prozesse bestimmt und mikroskopische Erklärungen gefunden werden.
Ein wichtiger Punkt ist der schon erwähnte Kontakt zwischen Absorberschicht und Elektrode. Dort auftretende Energiebarrieren führen zu einem Einbruch im Solarzellenwirkungsgrad, der sich durch eine Verringerung der Leerlaufspanung und/oder S-förmigen Kennlinien (S-Knick) bemerkbar macht. Anhand einer systematischen Studie der Grenzfläche Lochleiter/Donator wird gezeigt, dass Energiebarrieren sowohl für die Ladungsträgerextraktion als auch für die -injektion zu S-Knicken führen können. Insbesondere die Tatsache, dass Injektionsbarrieren sich auch negativ auf den Photostrom auswirken, wird anhand von simulierten Ladungsträger- und elektrischen Feldprofilen erklärt. Das Aufstauen von Ladungsträgern an Extraktionsbarrieren wird durch Messungen transienter Photoströme bestätigt. Da S-Knicke in organischen Solarzellen im Allgemeinen häufig beobachtet werden, werden weitere Methoden vorgeschlagen, die die Identifikation der Ursachen ermöglichen. Dazu zählen I-U Messungen in Abhängigkeit von Temperatur und Schichtdicken. Als eine weitere Ursache von S-Knicken werden unausgeglichene Ladungsträgerbeweglichkeiten in einer Solarzelle mit flachem Übergang identifiziert und von den Barrierefällen unterschieden.
Weiterer Forschungsgegenstand dieser Arbeit sind Mischschichtsolarzellen aus dem Donator-Farbstoff Zink-Phthalozyanin ZnPc und dem Akzeptor Fulleren C60. Dort wird beobachtet, dass die Leerlaufspannung vom Mischverhältnis abhängt. Ein Vergleich von Experiment und Simulation zeigt, dass sich das Ionisationspotenzial von ZnPc und dadurch die effektive Energielücke des Mischsystems ändern. Zusätzlich zu homogenen Mischschichten werden Solarzellen untersucht, die einen Gradienten im Mischungsverhältnis aufweisen. Die Vermutung liegt nahe, dass ein hoher Donatorgehalt am Löcherkontakt und ein hoher Akzeptorgehalt nahe des Elektronenkontakts die Ladungsträgerextraktion begünstigen.
Dieser Effekt ist in dem hier untersuchten System allerdings vergleichsweise irrelevant gegenüber der Tatsache, dass der Gradient das Abfließen bzw. die Rekombination von Ladungsträgern am “falschen” Kontakt reduziert und somit die Leerlaufspannung erhöht.
Der wichtigste intrinsische Verlustmechanismus einer Solarzelle ist die Rekombination von Ladungsträgern. Diese wird im letzten Teil der Arbeit anhand der ZnPc:C60 Solarzelle behandelt. Messungen der Leerlaufspannung in Abhängigkeit von der Beleuchtungsintensität zeigen, dass sich der dominierende Rekombinationsprozess mit zunehmender Intensität von Störstellenrekombination zu direkter Rekombination von freien Ladungsträgern verschiebt. Eine gezielte Variation des Absorptionsprofils in der Absorberschicht zeigt, dass die Ladungsträgerextraktionswahrscheinlickeit vom Ort der Ladungsträgergeneration abhängt. Dieser Effekt wird hervorgerufen durch unausgeglichene Elektronen- und Löcherbeweglichkeiten und äußert sich im Füllfaktor.
Weitere Simulationsergebnisse bezüglich des Einflusses von Ladungsträgerbeweglichkeiten und verschiedener Rekombinationsmechanismen auf die I-U Kennlinie und die experimentelle Identifikation eines Photoshunts, der den Photostrom in Rückwärtsrichtung unter Beleuchtung dominiert, runden die Arbeit ab.:Abstract - Kurzfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
1 Introduction
1.1 Energy supply and climate change . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Development of (organic) photovoltaics . . . . . . . . . . . . . . . . . . 3
1.3 Structure and scope of this thesis . . . . . . . . . . . . . . . . . . . . . . 6
I Basics
2 Photovoltaic Energy Conversion
2.1 Fundamentals of solar thermal energy conversion . . . . . . . . . . .11
2.1.1 The solar spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Black-body irradiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
2.1.3 Maximum power-conversion efficiency . . . . . . . . . . . . . . . . . 15
2.2 Basics of semiconductor physics . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Band structure, electrons and holes . . . . . . . . . . . . . . . . . . 16
2.2.2 Quasi-Fermi levels and electrochemical potentials . . . . . . . . . .22
2.3 Transformation of thermal radiation into chemical energy . . . . . 28
2.4 From chemical energy to electrical energy . . . . . . . . . . . .. . . . . 29
2.5 Possible solar-cell realizations . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.1 The p-n junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.2 Heterojunction and dye solar cells . . . . . . . . . . . . . . . . . . . . 36
2.5.3 The p-i-n concept with wide-gap transport layers . . . . . . . . . 37
2.6 Maximum efficiency – Shockley-Queisser limit . . . . . . . . . . . . . .38
2.7 Novel concepts and classification of solar cells . . . . . . . . . . . . . 41
3 Organic Solar Cells
3.1 Energetics of organic molecules . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.1 From atoms to molecules . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.2 From single molecules to a molecular solid . . . . . . . . . . . . . . 50
3.2 Energy and charge transport in organic semiconductors . . . . . . 52
3.2.1 Exciton transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.2 Charge transport - Gaussian disorder model . . . . . . . . . . . . .53
3.3 Working principle of donor-acceptor heterojunction solar cells . .57
3.3.1 Particle losses, quantum efficiency, and photocurrent . . . . . . .57
3.3.2 Energy losses, potential energy, and photovoltage . . . . . . . . 62
3.3.3 Maximum power-conversion efficiency . . . . . . . . . . . . . . . . . 66
3.3.4 Understanding the J-V curve in the MIM picture . . . . . . . . . . .68
3.3.5 Introduction to analytical models describing the photocurrent 70
3.4 Metal-organic interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4.1 Conventional metal-semiconductor interfaces: Barriers and Schottky
contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4.2 Metal-organic interfaces: Disorder and ICT . . . . . . . . . . . . . . 79
3.5 Experimental realization of small-molecule solar cells . . . . . . . . 80
3.5.1 Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.5.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
3.5.3 Fabrication details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.6 Basic characterization methods . . . . . . . . . . . . . . . . . . . . . . . 92
3.6.1 Current-voltage characteristics . . . . . . . . . . . . . . . . . . . . . . 92
3.6.2 Spectrally resolved measurements . . . . . . . . . . . . . . . . . . . 93
3.6.3 Transient measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4 Modeling
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2 The drift-diffusion model in general . . . . . . . . . . . . . . . . . . . . 99
4.2.1 Derivation and conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.2 The Einstein Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
4.2.3 Poisson’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.4 Differential equation system . . . . . . . . . . . . . . . . . . . . . . . .105
4.3 Implementation of the algorithm . . . . . . . . . . . . . . . . . . . . . . 106
4.3.1 Basics of the algorithm and discretization . . . . . . . . . . . . . . 107
4.3.2 Calculation of the electric field . . . . . . . . . . . . . . . . . . . . . . 108
4.3.3 Calculation of rates of change . . . . . . . . . . . . . . . . . . . . . . 109
4.3.4 Calculation of the time step . . . . . . . . . . . . . . . . . . . . . . . . 111
4.3.5 Detection of steady state and transient currents . . . . . . . . . 111
4.4 Implemented models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.4.1 Charge carrier mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.4.2 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.4.3 Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.4.4 Gaussian density of states . . . . . . . . . . . . . . . . . . . . . . . . 120
4.5 Contacts as boundary conditions . . . . . . . . . . . . . . . . . . . . . 121
4.6 Organic-organic interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.6.1 Charge transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.6.2 Generation and recombination . . . . . . . . . . . . . . . . . . . . . . 127
4.7 The simulation tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.8 Verification with analytical solutions . . . . . . . . . . . . . . . . . . . 129
4.8.1 Single-carrier devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.8.2 The p-n junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.9 Experimental determination of material properties . . . . . . . . . 136
4.10 Summary and main input parameters . . . . . . . . . . . . . . . . . 140
II Results and Discussion
5 Simulation Study on Single-Layer Bulk-Heterojunction Solar Cells
5.1 Investigated device structure and definitions . . . . . . . . . . . . . 144
5.2 On the optimum mobility, contact properties, and the open-circuit
voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146
5.2.2 Investigated mobility and recombination models . . . . . . . . . .147
5.2.3 Recombination only in the BHJ (selective contacts) . . . . . . . . 149
5.2.4 Recombination (also) at electrodes (non-selective contacts) . .155
5.2.5 Injection barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
5.2.6 Effect of energy-level bending on the open-circuit voltage . . . 161
5.3 Photocurrent and characteristic points in simulated J-V curves . .163
5.3.1 Negligible bulk recombination . . . . . . . . . . . . . . . . . . . . . . . .164
5.3.2 Bulk-recombination-limited photocurrent . . . . . . . . . . . . . . . 167
5.4 The effect of disorder on the open-circuit voltage . . . . . . . . . . .169
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172
6 Influence of Injection and Extraction Barriers on Open-Circuit Voltage and
J-V Curve Shape studied at a Variation of Hole Transport Layer and Donor
Materials
6.1 Methodological approach . . . . . . . . . . . . . . . . . . . . . . . . . . . .174
6.2 Current-voltage data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.2.1 Fingerprints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.2.2 Current-voltage characteristics under illumination . . . . . . . . . 181
6.3 Detailed microscopic explanations . . . . . . . . . . . . . . . . . . . . . .181
6.3.1 Injection barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184
6.3.2 Extraction barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187
6.3.3 Comparison between flat and bulk heterojunction . . . . . . . . . 188
6.4 Current-voltage curves in a logarithmic plot . . . . . . . . . . . . . . .188
6.5 Detailed analysis of the material combination MeO-TPD and BPAPF as
donor and hole transport layer . . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.5.1 The interfaces BPAPF/MeO-TPD and MeO-TPD/BPAPF measured
by photoelectron spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.5.2 Dependence of the J-V curve shape on layer thicknesses . . . . 195
6.5.3 Dependence of the S-kink on temperature . . . . . . . . . . . . . . 198
6.5.4 Transient measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 200
6.6 Summary and final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 207
7 Imbalanced Mobilities causing S-shaped J-V Curves in Planar Heterojunction
Solar Cells
7.1 Imbalanced mobilities in simulation . . . . . . . . . . . . . . . . . . . . . 209
7.2 Experimental verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
7.2.1 Current-voltage characteristics . . . . . . . . . . . . . . . . . . . . . . 216
7.2.2 Transient photocurrents . . . . . . . . . . . . . . . . . . . . . . . . . . 219
7.3 Field-dependent exciton dissociation as an additional source of
S-kinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
8 Open-Circuit Voltage and J-V Curve Shape of ZnPc:C60 Solar Cells with Varied
Mixing Ratio and Hole Transport Layer
8.1 Experimental approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
8.2 The open-circuit voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . .225
8.3 The role of the hole transport layer and of doping . . . . . . . . . .228
8.4 Explaining the open-circuit voltage as a function of mixing ratio 230
8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
9 Effect of Concentration Gradients in ZnPc:C60 Bulk Heterojunction Solar Cells
9.1 Investigated devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
9.2 Current-voltage results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
9.2.1 Fill factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
9.2.2 Short-circuit current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
9.2.3 Open-circuit voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
9.3 Voltage dependent external quantum efficiency data . . . . . . . . 245
9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247
10 Role of the Generation Profile and Recombination in ZnPc:C60 Solar Cells
10.1 Idea and solar-cell design . . . . . . . . . . . . . . . . . . . . . . . . . . 249
10.1.1 Absorption data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
10.1.2 Simulated generation profiles . . . . . . . . . . . . . . . . . . . . . . 253
10.2 Correlation of fill factor with generation profile and imbalance in
mobilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
10.2.1 Current-voltage data . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
10.2.2 Monochromatic J-V curves . . . . . . . . . . . . . . . . . . . . . . . . 258
10.2.3 Voltage dependent external quantum efficiency . . . . . . . . . 259
10.3 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
10.3.1 Exponential region of dark J-V curves . . . . . . . . . . . . . . . . 261
10.3.2 J-V data dependent on illumination intensity . . . . . . . . . . . 265
10.3.3 Lifetime of charge carriers . . . . . . . . . . . . . . . . . . . . . . . . 271
10.4 Comparison with simulations . . . . . . . . . . . . . . . . . . . . . . . . 273
10.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
11 Linear Saturation Behavior
11.1 Definition of the photoshunt . . . . . . . . . . . . . . . . . . . . . . . . 279
11.2 Quasi-linear photocurrent in simulation . . . . . . . . . . . . . . . . 280
11.3 Experimental approach and results . . . . . . . . . . . . . . . . . . . 281
11.3.1 Identification of the main source of the photoshunt . . . . . . 283
11.3.2 Investigation of the thickness dependence of the saturation 285
11.3.3 Photoshunt in flat heterojunction ZnPc/C60 solar cells . . . . 289
11.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
III Summary and Outlook
12 Main Results
12.1 Interpretation of current-voltage curves . . . . . . . . . . . . . . . . 295
12.2 Stack design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
12.3 Main conclusions on the applicability of the developed drift-diffusion
simulation to organic solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . 302
13 Further Analyses and Possible Extensions of the Simulation
13.1 Frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
13.2 Reverse tunneling currents and tandem cells . . . . . . . . . . . . . 307
13.2.1 Reverse current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
13.2.2 J-V curves of tandem cells . . . . . . . . . . . . . . . . . . . . . . . . 309
13.3 Further points to examine . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Appendix
A Lists
A.1 List of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
A.2 List of abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
A.3 List of constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
B Simulation data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
C Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Acknowledgments - Danksagung 361
|
227 |
Organic Small Molecules: Correlation between Molecular Structure, Thin Film Growth, and Solar Cell PerformanceSchünemann, Christoph 09 January 2013 (has links)
Das wesentliche Ziel dieser Doktorarbeit ist es, die Zusammenhänge zwischen der Struktur von kleinen organischen Molekülen, deren Anordnung in der Dünnschicht und der Effizienz organischer Solarzellen zu beleuchten. Die Kombination der komplementären Methoden spektroskopischer Ellipsometrie (VASE) und Röntgenstreuung, vor allem der unter streifendem Einfall (GIXRD), hat sich als sehr effiient für die Strukturuntersuchungen organischer Dünnschichten erwiesen. Zusammen geben sie einen detailreichen Einblick in die intermolekulare Anordnung, die Kristallinität, die molekulare Orientierung, die optischen Konstanten n und k und die Phasenseparation von organischen Schichten. Zusätzlich wird die Topografie der organischen Dünnschicht mit Rasterkraftmikroskopie untersucht.
Der erste Fokus liegt auf der Analyse des Dünnschichtwachstums von Zink-Phthalocyanin (ZnPc) Einzelschichten. Für alle untersuchten Schichtdicken (5, 10, 25, 50 nm) und Substrattemperaturen (Tsub=30°C, 60°C, 90°C) zeigt ZnPc ein kristallines Schichtwachstum mit aufrecht stehenden ZnPc Molekülen. Um effiziente organische Solarzellen herzustellen, werden Donor- und Akzeptormoleküle üblicherweise koverdampft. Bei der Mischung von Donor- und Akzeptormolekülen bildet sich eine gewisse Phasenseparation aus, deren Form wesentlich für die Ladungsträgerextraktion entlang der Perkolationpfade ist. Der Ursprung dieser Phasenseparation wird innerhalb dieser Arbeit experimentell für ZnPc:C60 Absorber-Mischschichten untersucht. Um die Ausprägung der Phasenseparation zu variieren, werden verschiedene Tsub (30°C, 100°C, 140°C) und Mischverhältnisse (6:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:6) bei der Koverdampfung von ZnPc und C60 angewendet. GIXRD Messungen zeigen, dass hier der bevorzugte Kristallisationsprozess von C60 Molekülen die treibende Kraft für eine effiziente Phasenseparation ist. Solarzellen, die ZnPc:C60 Mischschichten mit verbesserter Phasenseparation enthalten (Tsub=140°C, 1:1), zeigen eine verbesserte Ladungsträgerextraktion und somit eine höhere Effizienz von 3,0% im Vergleich zu 2,5% für die entsprechende Referenzsolarzelle (Tsub=30°C, 1:1).
Im zweiten Teil der Arbeit wird der Einfluss der Molekülorientierung auf die Dünnschichtabsorption beispielhaft an ZnPc und Diindenoperylen (DIP) untersucht. DIP und ZnPc Moleküle, die auf schwach wechselwirkenden Substraten wie Glas, SiO2, amorphen organischen Transportschichten oder C60 aufgedampft sind, zeigen eine eher stehende Orientierung innerhalb der Dünnschicht in Bezug zur Substratoberfläche. Im Gegensatz dazu führt die Abscheidung auf stark wechselwirkenden Substraten, wie z.B. einer Gold- oder Silberschicht oder 0.5 nm bis 2 nm dünnen PTCDA (3,4,9,10-Perylentetracarbonsäuredianhydrid) Templatschichten laut GIXRD und VASE Messungen dazu, dass sich die ZnPc und DIP Moleküle eher flach liegend orientieren. Dies führt zu einer wesentlich besseren Dünnschichtabsorption da das molekulare Übergangsdipolmoment jeweils innerhalb der Ebene des ZnPc und des DIP Moleküls liegt. Ein Einbetten von Gold- oder Silberzwischenschichten in organischen Solarzellen führt leider zu keinen klaren Abhängigkeiten, da die verbesserte Absorption durch die flach liegenden Moleküle von Mikrokavitäts- und plasmonischen Effekten überlagert wird. Ebenso wenig führte das Einfügen einer PTCDA-Zwischenschicht in organischen Solarzellen zum Erfolg, da hier Transportbarrieren den Effekt der verbesserten Absorption überlagern.
Das letzte Kapitel konzentriert sich auf den Einfluss der Molekülstruktur auf das Dünnschichtwachstum am Beispiel von DIP und dessen Derivaten Ph4-DIP und P4-Ph4-DIP, Isoviolanthron und Bis-nFl-NTCDI (N,N-Bis(fluorene-2-yl)-naphthalenetetra-carboxylic Diimid) Derivaten. GIXRD Messungen belegen deutlich, dass die sterischen Behinderungen, hervorgerufen durch die Phenylringe (für Ph4-DIP und P4-Ph4-DIP) und Seitenketten (für Bis-nFl-NTCDI), ein amorphes Schichtwachstum induzieren. Im Vergleich sind die Dünnschichten von DIP und Bis-HFl-NTCDI kristallin. Bezüglich der Molekülorientierung und folglich der Absorption von DIP und dessen Derivaten kann ein starker Einfluss des Schichtwachstums beobachtet werden. In Solarzellen verhindert die Präsenz der Phenylringe eine effiziente Phasenseparation der Mischschichten aus (P4-)Ph4-DIP:C60, was zu einer verschlechterten Ladungsträgerextraktion und damit zu einem reduzierten Füllfaktor (FF) von 52% im Vergleich zu dem entsprechender DIP:C60 Solarzellen mit FF=62% führt Die Untersuchungen an der Bis-nFl-NTICDI Serie zeigen ein ähnliches Ergebnis: Auch hier zeichnen sich die amorphen Schichten aus Bis-nFl-NTCDI Molekülen mit Seitenketten durch schlechtere Transporteigenschaften aus als nanokristalline Bis-HFl-NTCDI Schichten. / The aim of this thesis is to demonstrate correlations between the molecular structure of small organic molecules, their arrangement in thin films, and the solar cell performance. For structure analysis of the organic thin films, the combination of variable angle spectroscopic ellipsometry (VASE) and grazing incidence X-ray diffraction (GIXRD) as complementary methods turned out to be a powerful combination. Using both methods, it is possible to obtain information about the crystallinity, crystallite size, intermolecular arrangement, mean molecular orientation, optical constants n and k, and phase separation within thin films. In addition, the topography of thin films is analyzed by atomic force microscopy.
First, the thin film morphology of pristine zinc-phthalocyanine (ZnPc) films deposited at different substrate temperatures (Tsub=30°C, 60°C, 90°C) and for varying film thicknesses (5, 10, 25, 50 nm) is investigated. The ZnPc films grow highly crystalline with an upright standing molecular orientation with respect to the substrate surface for all investigated Tsub and all film thicknesses. In effcient organic solar cells, donor and acceptor molecules are commonly co-deposited to form a blend absorber film. This is usually accompanied by a certain phase separation between donor and acceptor molecules leads to a formation of percolation paths necessary to extract electrons and holes towards the electrodes. For ZnPc:C60 blends the origin of this phase separation process is analyzed by investigating different degrees of phase separation induced by film deposition at different Tsub (30°C, 100°C, 140°C) and for different blend ratios (6:1, ... , 1:6 (vol%)). GIXRD measurements indicate that the preferred crystallization of C60 is the driving force for good phase separation. Solar cells with improved phase separation of ZnPc:C60 blends (Tsub=140°C, 1:1) reveal a better charge carrier extraction and thus enhanced effciencies of 3.0% in comparison to 2.5% for the reference device (Tsub=30°C, 1:1).
In the second part, the impact of molecular orientation within the absorber thin films on light harvesting is examined for pristine ZnPc and diindenoperylene (DIP) films. For film deposition on weakly interacting substrates like glass, SiO2, amorphous organic transport films, or C60, the orientation of DIP and ZnPc molecules is found to be upright standing. In contrast, GIXRD and VASE measurements show that films deposited onto strongly interacting substrates like Au and Ag, as well as on thin PTCDA templating layers lead to nearly flat-lying ZnPc and DIP molecules. Since the molecular transition dipole moment is oriented in the plane of the DIP and ZnPc molecules, the light absorption in films with flat-lying molecules is strongly improved. Unfortunately, an implementation of Au or Ag sublayers in organic solar cells does not result in reliable dependencies since the enhanced absorption by an improved molecular orientation is superimposed by different effects like microcavity and plasmonic effects. The implementation of PTCDA interlayers leads to transport barriers making the solar cell data interpretation difficult.
In the last part, the influence of molecular structure on thin film growth is studied for DIP and its derivatives Ph4-DIP and P4-Ph4-DIP, isoviolanthrone, and Bis-nFl-NTCDI derivatives. GIXRD measurements reveal that steric hindrance is induced by the addition of side chains (for Bis-nFl-NTCDI) and phenyl rings (for Ph4-DIP and P4-Ph4-DIP) (N,N-Bis(fluorene-2-yl)-naphthalenetetra-carboxylic diimide) leading to an amorphous thin film growth. In contrast, DIP films and Bis-HFl-NTCDI films are found to be crystalline. The mean molecular orientation and hence the absorption is strongly affected by the different growth modes of DIP and its derivatives. In OSC, the presence of the phenyl rings prevents an effcient phase separation for (P4-)Ph4-DIP:C60 blends which causes diminished charge extraction in comparison to the crystalline DIP:C60 blends. For the Bis-nFl-NTCDI series, the transport properties are significantly worse in the amorphous films composed of Bis-nFl-NTCDI derivatives with alkyl chains in comparison to the nanocrystalline films made of the bare Bis-HFl-NTCDI.
|
228 |
Oligothiophene Materials for Organic Solar Cells - Photophysics and Device PropertiesKörner, Christian 18 July 2013 (has links)
The rapidly increasing power conversion efficiencies (PCEs) of organic solar cells (OSCs) above 10% were made possible by concerted international research activities in the last few years, aiming to understand the processes that lead to the generation of free charge carriers following photon absorption. Despite these efforts, many details are still unknown, especially how these processes can be improved already at the drawing board of molecular design. To unveil this information, dicyanovinyl end-capped oligothiophene derivatives (DCVnTs) are used as a model system in this thesis, allowing to investigate the impact of small structural changes on the molecular properties and the final solar cells.
On thin films of a methylated DCV4T derivative, the influence of the measurement temperature on the charge carrier generation process is investigated. The observed temperature activation in photoinduced absorption (PIA) measurements is attributed to an increased charge carrier mobility, increasing the distance between the charges at the donor/acceptor (D/A) interface and, thus, facilitating their final dissociation. The correlation between the activation energy and the mobility is confirmed using a DCV6T derivative with lower mobility , exhibiting a higher activation energy for charge carrier generation.
Another parameter to influence the charge carrier generation process is the molecular structure. Here, alkyl side chains with varying length are introduced and their influence on the intramolecular energy levels as well as the absorption and emission properties in pristine and blend films with the acceptor C60 are examined. The observed differences in intermolecular order (higher order for shorter side chains) and phase separation in blend layers (larger phase separation for shorter side chains) are confirmed in PIA measurements upon comparing the temperature dependence of the triplet exciton lifetimes. A proposed correlation between the side chain length and the coupling between D and A, which is crucial for efficient charge transfer, is not confirmed. The presented flat heterojunction solar cells underline this conclusion, giving similar photocurrent densities for all compounds. Differences in PCE are related to shifts of the energy levels and the morphology of the blend layer in bulk heterojunction devices.
Furthermore, the impact of the electric field on the charge carrier generation yield is investigated in a proof-of-principle study, introducing PIA measurements in transmission geometry realized using semitransparent solar cells. The recombination analysis of the photogenerated charge carriers reveals two recombination components. Trapped charge carriers or bound charge pairs at the D/A interface are proposed as an explanation for this result. The miscibility of D and A, which can be influenced by heating the substrate during layer deposition, is of crucial importance to obtain high PCEs. In this work, the unusual negative influence of the substrate temperature on DCV4T:C60 blend layers in solar cells is investigated. By using optical measurements and structure determination tools, a rearrangement of the DCV4T crystallites is found to be responsible for the reduced absorption and, therefore, photocurrent at higher substrate temperature. The proposed blend morphology at a substrate temperature of 90° C is characterized by a nearly complete demixing of the D and A phases. This investigation is of particular relevance, because it shows the microscopic origins of a behavior that is contrary to the increase of the PCE upon substrate heating usually reported in literature.
Finally, the optimization steps to achieve a record PCE of 7.7% using a DCV5T derivative as donor material are presented, including the optimization of the substrate temperature, the active layer thickness, and the transport layers.:Abstract - Kurzfassung
Publications
Contents
1 Introduction
2 Elementary Processes in Organic Semiconductors
2.1 Introduction
2.2 Optical Excitations in Organic Materials
2.2.1 Introduction
2.2.2 Radiative Processes: Absorption and Emission
2.2.3 Non-radiative Relaxation Processes
2.2.4 Triplet Excitons and Intersystem Crossing
2.3 Polarization Effects and Disorder
2.4 Transport Processes in Disordered Organic Materials
2.4.1 Charge Transport
2.4.1.1 The Bässler Model
2.4.1.2 Marcus Theory for Electron Transfer
2.4.1.3 Small Polaron Model
2.4.1.4 Functional Dependencies of the Charge Carrier Mobility
2.4.2 Diffusive Motion
2.4.3 Exciton Transfer Mechanisms
2.4.4 Characteristics of Exciton Diffusion
2.5 Charge Photogeneration in Pristine Materials
3 Organic Photovoltaics
3.1 General Introduction to Solar Cell Physics
3.2 Introduction to the Donor/Acceptor Heterojunction Concept
3.3 The Open-Circuit Voltage in Organic Solar Cells
3.4 Doping of Organic Semiconductors
3.5 Introduction to the p-i-n Concept
3.6 Charge Transfer Excitons in Donor/Acceptor Heterojunction Systems
3.6.1 Introduction
3.6.2 Verification of Charge Transfer Excitons in Donor/Acceptor Systems
3.7 The Process Cascade for Free Charge Carrier Generation in Donor/Acceptor
Heterojunction Systems
3.7.1 The Initial Charge Transfer Step
3.7.2 The Binding Energy of the Charge Transfer Exciton
3.7.3 \"Hot\" Charge Transfer Exciton Dissociation
3.7.4 \"Cold\" Charge Transfer Exciton Dissociation
3.7.5 Supposed Influence Factors on Charge Transfer Exciton Dissociation
3.7.6 Recombination Pathways for Charge Transfer Excitons
3.7.7 Free Charge Carrier Formation and Recombination
4 Experimental Methods
4.1 Sample Preparation
4.2 Material Characterization Methods
4.2.1 Optical Characterization
4.2.2 Cyclic Voltammetry
4.2.3 Ultraviolet Photoelectron Spectroscopy
4.2.4 Atomic Force Microscopy
4.2.5 Grazing Incidence X-Ray Diffraction
4.2.6 Organic Field-Effect Transistor
4.3 Photoinduced Absorption Spectroscopy
4.3.1 Introduction
4.3.2 Derivation of the PIA Signal
4.3.3 Recombination Dynamics
4.3.4 Intensity Dependence of the PIA Signal
4.4 Solar Cell Characterization
4.4.1 External Quantum Efficiency
4.4.2 Spectral Mismatch Correction
4.4.3 Current-Voltage Characteristics
4.4.4 Optical Device Simulations
4.4.5 Optical Device Transmission Measurements
5 The Oligothiophene Material System
5.1 Introduction
5.2 Thermal Stability
5.3 Energy Levels
5.4 Optical Properties of the Pristine Materials
5.5 The Donor/Acceptor Couple: DCVnT and C60
5.6 Solar Cell Devices
5.7 Summary
6 Temperature Dependence of Charge Carrier Generation
6.1 Introduction
6.2 Principal Introduction to the PIA Measurements
6.2.1 Interpretation of the Spectra
6.2.2 Interpretation of the Frequency Scans
6.3 Temperature Dependence of the Spectra
6.4 Discussion of the Temperature Dependent Processes in the Blend Layer
6.5 Temperature Activated Free Charge Carrier Generation
6.5.1 Evaluation of the Activation Energy for the DCV4T-Me:C60 Blend
6.5.2 Comparison to a Sexithiophene Derivative (DCV6T-Me)
6.6 Summary
7 Side Chain Investigation on Quaterthiophene Derivatives
7.1 Energy Levels
7.2 Optical Properties
7.2.1 Solution and Pristine Films
7.2.2 Mixed Films with C60
7.3 Influence of the Side Chain Length on the Intermolecular Coupling
7.3.1 PIA Spectra of Pristine and Blend Layers at 10K
7.3.2 Recombination Analysis for Pristine and Blend Films at 10K
7.4 The Influence of the Side Chain Length on the Offset Charge Carrier Generation
Rate at Low Temperature
7.5 In the High-Temperature Limit: Implications for Solar Cell Devices
7.5.1 PIA Spectra in Pristine and Blend Films at 200K
7.5.2 Recombination Analysis: Triplet Excitons and Free Charge Carriers
7.6 Solar Cells
7.6.1 Flat Heterojunction Devices
7.6.2 Bulk Heterojunction Devices
7.7 Summary
8 Electric-Field Dependent PIA Measurements on Complete Solar Cell Devices
8.1 Introduction
8.2 Semitransparent Organic Solar Cells
8.3 Photoinduced Absorption Measurements
8.4 Summary and Outlook
9 The Effect of Substrate Heating During Layer Deposition on the Performance of
DCV4T:C60 BHJ Solar Cells
9.1 Introduction
9.2 The Importance of Morphology Control for BHJ Solar Cells
9.3 The Impact of Substrate Heating on DCV4T:C60 BHJ Solar Cells
9.4 Absorption and Photoluminescence
9.5 Topographical Investigations (AFM)
9.6 X-ray Investigations
9.6.1 1D GIXRD Measurements
9.6.2 2D GIXRD Measurements
9.7 Proposed Morphological Picture and Confirmation Measurements
9.7.1 Morphology Sketch of the DCV4T:C60 Blend Layer
9.7.2 Confirmation Measurements
9.8 The Equivalence of Temperature and Time
9.9 Summary
10 Record Solar Cells Using DCV5T-Me33 as Donor Material
10.1 Introduction
10.2 The Influence of the Substrate Temperature
10.3 Determination of the Optical Constants
10.4 Stack Optimization
10.5 Summary and Outlook
11 Conclusions and Outlook
11.1 Summary of the Photophysical Investigations
11.2 Summary of Device Investigations
11.3 Future Challenges
Appendix A Detailed Description of the Experimental Setup for PIA Spectroscopy
Appendix B Determination of the Triplet Level by Differential PL Measurements
Appendix C Additional Tables and Figures
Appendix D Reproducibility of the Solar Cell Results (Statistics)
Appendix E Lists
Bibliography
Acknowledgments / Der rasante Anstieg des Wirkungsgrads von organischen Solarzellen über die Marke von 10% war nur durch länderübergreifende Forschungsaktivitäten während der letzten Jahre möglich. Trotz der gemeinsamen Anstrengungen, die Prozesse, die zwischen der Absorption der Photonen und der Ladungsträgererzeugung liegen, genauer zu verstehen, sind einige Fragen jedoch immer noch ungelöst, z.B. wie diese Prozesse schon auf dem Reißbrett durch die gezielte Änderung bestimmter Molekülstrukturen optimiert werden können. Um dieses Ziel zu erreichen, werden in dieser Arbeit Dicyanovinyl-substituierte Oligothiophene (DCVnTs) verwendet. Diese Materialien bieten die Möglichkeit, kleine strukturelle Änderungen vorzunehmen, deren Einfluss auf die molekularen und auf die Solarzelleneigenschaften untersucht werden soll.
Der Einfluss der Messtemperatur auf den Prozess der Ladungsträgertrennung wird hier an einer methylierten DCV4T-Verbindung in einer dünnen Schicht untersucht. Die bei photoinduzierter Absorptionsspektroskopie (PIA) beobachtete Aktivierung dieses Prozesses mit zunehmender Temperatur wird auf eine erhöhte Ladungsträgerbeweglichkeit zurückgeführt. Der dadurch erhöhte effektive Abstand der Ladungen an der Grenzfläche zwischen Donator (D) und Akzeptor (A) erleichtert die endgültige Trennung der Ladungsträger. Durch den Vergleich mit einer DCV6T-Verbindung wird der Zusammenhang zwischen der Aktivierungsenergie und der Beweglichkeit bekräftigt. Die kleinere Beweglichkeit äußert sich dabei in einer größeren Aktivierungsenergie.
Darüber hinaus kann der Ladungsträgergenerationsprozess auch von der Molekülstruktur abhängen. In dieser Arbeit wird untersucht, wie sich die Länge von Alkylseitenketten auf die Energieniveaus der Moleküle, aber auch auf die Absorptions- und Lumineszenzeigenschaften der Materialien in reinen und in Mischschichten mit dem Akzeptor C60 äußert. Die ermittelten Unterschiede bezüglich der Molekülordnung (geordneter für kürzere Seitenketten) und der Phasengrößen in Mischschichten (größere Phasen bei kürzerer Kettenlänge) werden in der Untersuchung der Temperaturabhängigkeit der Lebensdauer von Triplettexzitonen mittels PIA-Messungen bestätigt. Für Solarzellen ist von Bedeutung, ob sich die Seitenkettenlänge auf die Wechselwirkung zwischen D und A auswirkt. Der vermutete Zusammenhang wird hier nicht bestätigt. Ein ähnlicher Photostrom für alle untersuchten Verbindungen in Solarzellen mit planaren Heteroübergängen unterstreicht diese Schlussfolgerung. Unterschiede im Wirkungsgrad werden auf Änderungen der Energieniveaus und die Morphologie in Mischschichtsolarzellen zurückgeführt.
Des Weiteren wird in einer Machbarkeitsstudie der Einfluss des elektrischen Felds auf die Generationsausbeute freier Ladungsträger untersucht. Dafür werden halbtransparente Solarzellen verwendet, die es ermöglichen, PIA-Messungen in Transmissionsgeometrie durchzuführen. Als mögliche Erklärung für das Auftreten zweier Rekombinationskomponenten in der Analyse des Rekombinationsverhaltens der durch Licht erzeugten Ladungsträger werden eingefangene Ladungsträger und gebundene Ladungsträgerpaare an der D/A-Grenzfläche genannt. Das Mischverhalten von D und A kann durch ein Heizen des Substrates während des Verdampfungsprozesses eingestellt werden, was von entscheidender Bedeutung für eine weitere Steigerung des Wirkungsgrades ist. Für DCV4T:C60-Mischschichtsolarzellen wird jedoch eine Verschlechterung des Wirkungsgrads zu höheren Substrattemperaturen beobachtet. Durch optische Messungen und Methoden zur Schichtstrukturbestimmung wird dieser Effekt auf eine Umordnung der DCV4T-Kristallite für hohe Substrattemperaturen und die damit verbundene Verringerung der Absorption und damit auch des Photostroms zurückgeführt. Bei einer Substrattemperatur von 90° C sind die D- und A-Komponenten fast vollständig entmischt. Dieses Beispiel ist von besonderer Bedeutung, weil hier die Ursachen für ein Verhalten aufgezeigt werden, das entgegen den Beispielen aus der Literatur eine Abnahme des Wirkungsgrads beim Aufdampfen der aktiven Schicht auf ein geheiztes Substrat zeigt.
Schließlich werden die Optimierungsschritte dargelegt, mit denen Solarzellen mit einer DCV5T-Verbindung als Donatormaterial auf einen Rekordwirkungsgrad von 7,7% gebracht werden. Dabei wird die Substrattemperatur, die Dicke der aktiven Schicht und die Transportschichten angepasst.:Abstract - Kurzfassung
Publications
Contents
1 Introduction
2 Elementary Processes in Organic Semiconductors
2.1 Introduction
2.2 Optical Excitations in Organic Materials
2.2.1 Introduction
2.2.2 Radiative Processes: Absorption and Emission
2.2.3 Non-radiative Relaxation Processes
2.2.4 Triplet Excitons and Intersystem Crossing
2.3 Polarization Effects and Disorder
2.4 Transport Processes in Disordered Organic Materials
2.4.1 Charge Transport
2.4.1.1 The Bässler Model
2.4.1.2 Marcus Theory for Electron Transfer
2.4.1.3 Small Polaron Model
2.4.1.4 Functional Dependencies of the Charge Carrier Mobility
2.4.2 Diffusive Motion
2.4.3 Exciton Transfer Mechanisms
2.4.4 Characteristics of Exciton Diffusion
2.5 Charge Photogeneration in Pristine Materials
3 Organic Photovoltaics
3.1 General Introduction to Solar Cell Physics
3.2 Introduction to the Donor/Acceptor Heterojunction Concept
3.3 The Open-Circuit Voltage in Organic Solar Cells
3.4 Doping of Organic Semiconductors
3.5 Introduction to the p-i-n Concept
3.6 Charge Transfer Excitons in Donor/Acceptor Heterojunction Systems
3.6.1 Introduction
3.6.2 Verification of Charge Transfer Excitons in Donor/Acceptor Systems
3.7 The Process Cascade for Free Charge Carrier Generation in Donor/Acceptor
Heterojunction Systems
3.7.1 The Initial Charge Transfer Step
3.7.2 The Binding Energy of the Charge Transfer Exciton
3.7.3 \"Hot\" Charge Transfer Exciton Dissociation
3.7.4 \"Cold\" Charge Transfer Exciton Dissociation
3.7.5 Supposed Influence Factors on Charge Transfer Exciton Dissociation
3.7.6 Recombination Pathways for Charge Transfer Excitons
3.7.7 Free Charge Carrier Formation and Recombination
4 Experimental Methods
4.1 Sample Preparation
4.2 Material Characterization Methods
4.2.1 Optical Characterization
4.2.2 Cyclic Voltammetry
4.2.3 Ultraviolet Photoelectron Spectroscopy
4.2.4 Atomic Force Microscopy
4.2.5 Grazing Incidence X-Ray Diffraction
4.2.6 Organic Field-Effect Transistor
4.3 Photoinduced Absorption Spectroscopy
4.3.1 Introduction
4.3.2 Derivation of the PIA Signal
4.3.3 Recombination Dynamics
4.3.4 Intensity Dependence of the PIA Signal
4.4 Solar Cell Characterization
4.4.1 External Quantum Efficiency
4.4.2 Spectral Mismatch Correction
4.4.3 Current-Voltage Characteristics
4.4.4 Optical Device Simulations
4.4.5 Optical Device Transmission Measurements
5 The Oligothiophene Material System
5.1 Introduction
5.2 Thermal Stability
5.3 Energy Levels
5.4 Optical Properties of the Pristine Materials
5.5 The Donor/Acceptor Couple: DCVnT and C60
5.6 Solar Cell Devices
5.7 Summary
6 Temperature Dependence of Charge Carrier Generation
6.1 Introduction
6.2 Principal Introduction to the PIA Measurements
6.2.1 Interpretation of the Spectra
6.2.2 Interpretation of the Frequency Scans
6.3 Temperature Dependence of the Spectra
6.4 Discussion of the Temperature Dependent Processes in the Blend Layer
6.5 Temperature Activated Free Charge Carrier Generation
6.5.1 Evaluation of the Activation Energy for the DCV4T-Me:C60 Blend
6.5.2 Comparison to a Sexithiophene Derivative (DCV6T-Me)
6.6 Summary
7 Side Chain Investigation on Quaterthiophene Derivatives
7.1 Energy Levels
7.2 Optical Properties
7.2.1 Solution and Pristine Films
7.2.2 Mixed Films with C60
7.3 Influence of the Side Chain Length on the Intermolecular Coupling
7.3.1 PIA Spectra of Pristine and Blend Layers at 10K
7.3.2 Recombination Analysis for Pristine and Blend Films at 10K
7.4 The Influence of the Side Chain Length on the Offset Charge Carrier Generation
Rate at Low Temperature
7.5 In the High-Temperature Limit: Implications for Solar Cell Devices
7.5.1 PIA Spectra in Pristine and Blend Films at 200K
7.5.2 Recombination Analysis: Triplet Excitons and Free Charge Carriers
7.6 Solar Cells
7.6.1 Flat Heterojunction Devices
7.6.2 Bulk Heterojunction Devices
7.7 Summary
8 Electric-Field Dependent PIA Measurements on Complete Solar Cell Devices
8.1 Introduction
8.2 Semitransparent Organic Solar Cells
8.3 Photoinduced Absorption Measurements
8.4 Summary and Outlook
9 The Effect of Substrate Heating During Layer Deposition on the Performance of
DCV4T:C60 BHJ Solar Cells
9.1 Introduction
9.2 The Importance of Morphology Control for BHJ Solar Cells
9.3 The Impact of Substrate Heating on DCV4T:C60 BHJ Solar Cells
9.4 Absorption and Photoluminescence
9.5 Topographical Investigations (AFM)
9.6 X-ray Investigations
9.6.1 1D GIXRD Measurements
9.6.2 2D GIXRD Measurements
9.7 Proposed Morphological Picture and Confirmation Measurements
9.7.1 Morphology Sketch of the DCV4T:C60 Blend Layer
9.7.2 Confirmation Measurements
9.8 The Equivalence of Temperature and Time
9.9 Summary
10 Record Solar Cells Using DCV5T-Me33 as Donor Material
10.1 Introduction
10.2 The Influence of the Substrate Temperature
10.3 Determination of the Optical Constants
10.4 Stack Optimization
10.5 Summary and Outlook
11 Conclusions and Outlook
11.1 Summary of the Photophysical Investigations
11.2 Summary of Device Investigations
11.3 Future Challenges
Appendix A Detailed Description of the Experimental Setup for PIA Spectroscopy
Appendix B Determination of the Triplet Level by Differential PL Measurements
Appendix C Additional Tables and Figures
Appendix D Reproducibility of the Solar Cell Results (Statistics)
Appendix E Lists
Bibliography
Acknowledgments
|
229 |
Azadipyrromethene-based Metal Complexes as 3D Conjugated Electron Acceptors for Organic Solar CellsSenevirathna, Wasana 02 September 2014 (has links)
No description available.
|
230 |
Charge transfer states at polymer solar cell interfaces : Insights from atomic-scale modeling / Laddningsöverföringstillstånd vid polymersolcellsgränssnitt : Inblick från modellering i atomskalaSvensson, Rickard January 2022 (has links)
Organic solar cells (OSCs) based on non-fullerene acceptors (NFAs) have attracted a great deal of attention in recent years due to their rapidly increasing efficiency and enormous potential. In this work, the optical and electronic properties of systems containing the very promising non-fullerene acceptor PYT have been thoroughly studied with the use of the density functional theory (DFT) and the time-dependent density functional theory (TDDFT). By changing the electron linker from thiophene to furan and selenophene, respectively, the PYT was divided into three variants, each of which was studied independently. In addition, these three systems were combined with the donor PBDB-T to generate two distinct interface conformations. The properties studied in this work include the optimized geometries, HOMO-LUMO levels, UV-Vis spectra, frontier molecular orbitals (FMOs), natural transition orbitals (NTOs), density of states (DOS), dipole moments, open-circuit voltages, exciton binding energies, and local exciton (LE) and charge transfer (CT) energies. The calculations were performed in chlorobenzene solution utilizing the polarizable continuum model (PCM). It was discovered that PBDB-T/PY-Se exhibited remarkable flatness employing the π-π stacking conformation which corresponds well with the excellent D/A compatibility observed experimentally. All interfaces displayed appropriate positioning of the HOMO-LUMO levels, with the acceptor dominating the LUMO and the donor dominating the HOMO, with HOMO-LUMO gaps ranging between 1.34 and 1.38 eV. The differences in the interchanging of the electron linker were not that significant, and neither was the change in interface conformation in terms of the HOMO-LUMO levels. This may indicate that the system can be effective even without the presence of a π-π stacking conformation. The first excited states for all interface systems were shown to be pure CT transitions, and on average, 80% of the states exhibit CT character. The remaining contributions consisted of transitions within the pure materials, with a larger contribution within the acceptor. The theoretical results of this study indicate that systems containing the novel polymer acceptor PYT and its variants PY-O and PY-Se exhibit very intriguing properties, and further development of OSCs containing these polymers might further aid in the development of high-performance OSCs. / Organiska solceller (OSC) baserade på icke-fullerenacceptorer (NFA) har väckt stor uppmärksamhet de senaste åren på grund av dess snabbt ökande effektivitet och enorma potential. I detta arbete har de optiska och elektroniska egenskaperna hos system innehållande den mycket lovande icke-fullerenacceptorn PYT studerats grundligt med användning av täthetsfunktionalteorin (DFT) och den tidsberoende täthetsfunktionalteorin (TDDFT). Genom att ändra elektronförbindelsen från tiofen till furan respektive selenofen så delades PYT upp i tre varianter som var och en studerades oberoende av varandra. Dessutom kombinerades dessa tre system med donatorn PBDB-T för att generera två distinkta gränssnittskonformationer. Egenskaperna som studeras i detta arbete inkluderar optimerade geometrier, HOMO-LUMO-nivåer, UV-vis spektra, gränsmolekylära orbitaler (FMO), naturliga övergångsorbitaler (NTO), tillståndstäthet (DOS), dipolmoment, tomgångsspänning, excitonbindningsenergi samt lokal exciton (LE) och laddningsöverförings (CT) energier. Beräkningarna utfördes i klorbensenlösning med användning av den polariserbara kontinuummodellen (PCM). I resultatet uppvisade PBDB-T/PY-Se en anmärkningsvärd planhet med användning av π-π staplingskonformationen som överensstämmer väl med den utmärkta D/A-kompatibiliteten som observerats experimentellt. Alla gränssnitt visade lämplig positionering av HOMO-LUMO-nivåerna, med acceptorn som dominerade LUMO och donatorn som dominerade HOMO, med HOMO-LUMO-gap mellan 1.34 och 1.38 eV. Skillnaderna i utbytet av elektronförbindelsen visade sig inte vara signifikanta och inte heller skillnaden i gränssnittskonformation när det gäller HOMO-LUMO-nivåerna. Detta kan indikera att systemet kan vara effektivt även utan förekomst av π-π staplingskonformation. De första exciterade tillstånden för alla gränssnittssystem visade sig vara rena CT-övergångar och i genomsnitt uppvisade 80% av tillstånden CT-karaktär. Resterande andel bestod av övergångar inom de rena materialen med en större andel inom acceptorn. De teoretiska resultaten av denna studie indikerar att system innehållande den nya polymeracceptorn PYT och dess varianter PY-O och PY-Se uppvisar mycket spännande egenskaper samt att vidareutveckling av OSC:er som innehåller dessa polymerer ytterligare kan hjälpa till i utvecklingen av högpresterande OSC:er.
|
Page generated in 0.0655 seconds