• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 3
  • 1
  • Tagged with
  • 23
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Orthologs, turn-over, and remolding of tRNAs in primates and fruit flies

Velandia-Huerto, Cristian A., Berkemer, Sarah J., Hoffmann, Anne, Retzlaff, Nancy, Romero Marroquín, Liiana C., Hernández-Rosales, Maribel, Stadler, Peter F., Bermúdez-Santana, Clara I. January 2016 (has links)
Background: Transfer RNAs (tRNAs) are ubiquitous in all living organism. They implement the genetic code so that most genomes contain distinct tRNAs for almost all 61 codons. They behave similar to mobile elements and proliferate in genomes spawning both local and non-local copies. Most tRNA families are therefore typically present as multicopy genes. The members of the individual tRNA families evolve under concerted or rapid birth-death evolution, so that paralogous copies maintain almost identical sequences over long evolutionary time-scales. To a good approximation these are functionally equivalent. Individual tRNA copies thus are evolutionary unstable and easily turn into pseudogenes and disappear. This leads to a rapid turnover of tRNAs and often large differences in the tRNA complements of closely related species. Since tRNA paralogs are not distinguished by sequence, common methods cannot not be used to establish orthology between tRNA genes. Results: In this contribution we introduce a general framework to distinguish orthologs and paralogs in gene families that are subject to concerted evolution. It is based on the use of uniquely aligned adjacent sequence elements as anchors to establish syntenic conservation of sequence intervals. In practice, anchors and intervals can be extracted from genome-wide multiple sequence alignments. Syntenic clusters of concertedly evolving genes of different families can then be subdivided by list alignments, leading to usually small clusters of candidate co-orthologs. On the basis of recent advances in phylogenetic combinatorics, these candidate clusters can be further processed by cograph editing to recover their duplication histories. We developed a workflow that can be conceptualized as stepwise refinement of a graph of homologous genes. We apply this analysis strategy with different types of synteny anchors to investigate the evolution of tRNAs in primates and fruit flies. We identified a large number of tRNA remolding events concentrated at the tips of the phylogeny. With one notable exception all phylogenetically old tRNA remoldings do not change the isoacceptor class. Conclusions: Gene families evolving under concerted evolution are not amenable to classical phylogenetic analyses since paralogs maintain identical, species-specific sequences, precluding the estimation of correct gene trees from sequence differences. This leaves conservation of syntenic arrangements with respect to "anchor elements" that are not subject to concerted evolution as the only viable source of phylogenetic information. We have demonstrated here that a purely synteny-based analysis of tRNA gene histories is indeed feasible. Although the choice of synteny anchors influences the resolution in particular when tight gene clusters are present, and the quality of sequence alignments, genome assemblies, and genome rearrangements limits the scope of the analysis, largely coherent results can be obtained for tRNAs. In particular, we conclude that a large fraction of the tRNAs are recent copies. This proliferation is compensated by rapid pseudogenization as exemplified by many very recent alloacceptor remoldings.
22

Algorithmes de construction et correction d'arbres de gènes par la réconciliation

Lafond, Manuel 08 1900 (has links)
Les gènes, qui servent à encoder les fonctions biologiques des êtres vivants, forment l'unité moléculaire de base de l'hérédité. Afin d'expliquer la diversité des espèces que l'on peut observer aujourd'hui, il est essentiel de comprendre comment les gènes évoluent. Pour ce faire, on doit recréer le passé en inférant leur phylogénie, c'est-à-dire un arbre de gènes qui représente les liens de parenté des régions codantes des vivants. Les méthodes classiques d'inférence phylogénétique ont été élaborées principalement pour construire des arbres d'espèces et ne se basent que sur les séquences d'ADN. Les gènes sont toutefois riches en information, et on commence à peine à voir apparaître des méthodes de reconstruction qui utilisent leurs propriétés spécifiques. Notamment, l'histoire d'une famille de gènes en terme de duplications et de pertes, obtenue par la réconciliation d'un arbre de gènes avec un arbre d'espèces, peut nous permettre de détecter des faiblesses au sein d'un arbre et de l'améliorer. Dans cette thèse, la réconciliation est appliquée à la construction et la correction d'arbres de gènes sous trois angles différents: 1) Nous abordons la problématique de résoudre un arbre de gènes non-binaire. En particulier, nous présentons un algorithme en temps linéaire qui résout une polytomie en se basant sur la réconciliation. 2) Nous proposons une nouvelle approche de correction d'arbres de gènes par les relations d'orthologie et paralogie. Des algorithmes en temps polynomial sont présentés pour les problèmes suivants: corriger un arbre de gènes afin qu'il contienne un ensemble d'orthologues donné, et valider un ensemble de relations partielles d'orthologie et paralogie. 3) Nous montrons comment la réconciliation peut servir à "combiner'' plusieurs arbres de gènes. Plus précisément, nous étudions le problème de choisir un superarbre de gènes selon son coût de réconciliation. / Genes encode the biological functions of all living organisms and are the basic molecular units of heredity. In order to explain the diversity of species that can be observed today, it is essential to understand how genes evolve. To do this, the past has to be recreated by inferring their phylogeny, i.e. a gene tree depicting the parental relationships between the coding regions of living beings. Traditional phylogenetic inference methods have been developed primarily to construct species trees and are solely based on DNA sequences. Genes, however, are rich in information and only a few known reconstruction methods make usage of their specific properties. In particular, the history of a gene family in terms of duplications and losses, obtained by the reconciliation of a gene tree with a tree species, may allow us to detect weaknesses in a tree and improve it. In this thesis, reconciliation is applied to the construction and correction of gene trees from three different angles: 1) We address the problem of resolving a non-binary gene tree. In particular, we present a linear time algorithm that solves a polytomy based on reconciliation. 2) We propose a new gene tree correction approach based on orthology and paralogy relations. Polynomial-time algorithms are presented for the following problems: modify a gene tree so that it contains a given set of orthologous genes, and validate a set of partial orthology and paralogy relations. 3) We show how reconciliation can be used to "combine'' multiple gene trees. Specifically, we study the problem of choosing a gene supertree based on its reconciliation cost.
23

Méthodes et algorithmes pour l’amélioration de l’inférence de l’histoire évolutive des génomes

Noutahi, Finagnon Marc-Rolland Emmanuel 07 1900 (has links)
No description available.

Page generated in 0.0268 seconds