• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New Type Mechanical Overload Protection Devices Design by Patent Design Around and Biomimetic Concepts

Lee, Dau 11 February 2011 (has links)
Patent information can provide up-to-date technological data that accelerate the development of new products and the improvement of technology. They also can provide a most useful survey of known solution possibilities, which avoid duplication and the resources wasting. Therefore, this study focuses on the patent searching and analysis of the mechanical overload protection devices. Patent information are fed into computer databases and stored for design around activities. The connections between biology and technology be called as bionics or biomimetics can lead to very useful and novel technical solution. This study introduced special underwater creatures ¡§snapping shrimp¡¨ which have a large claw can generate the snapping action. This action inspires us to find a new technical solution that using the liquid cohesion to store and release the energy. In the end, using the patent information and the new solution to achieve the new design of mechanical overload protection devices, include ¡§Force-Type¡¨ and ¡§Torque-Type¡¨.
2

CPU Load Control of LTE Radio Base Station

Larsson, Joachim January 2015 (has links)
A radio base station (RBS) may become overloaded if too many mobile devices communicate with it at the same time. This could happen at for instance sport events or in the case of accidents. To prevent CPU overload, the RBS is provided with a controller that adjusts the acceptance rate, the maximum number of connection requests that can be accepted per time interval. The current controller is tuned in real radio base stations and the procedure is both time consuming and expensive. This, combined with the fact that the mobile data usage is predicted to increase puts more pressure on today's system. Thus, there is a need to be able to simulate the system in order to suggest an alternative controller. In this thesis, an implementation of the system is developed in Matlab in order to simulate the RBS system load control behaviour. A CPU load model is estimated using system identification. The current version of the CPU load controller and an alternative PI CPU load controller are implemented. Both are evaluated on different test cases and this shows that it is possible to increase the performance of the system with the alternative CPU load controller, both in terms of lower amount of rejected connection requests and decreased CPU load overshoot.
3

Design and Practical Implementation of Advanced Reconfigurable Digital Controllers for Low-power Multi-phase DC-DC Converters

Lukic, Zdravko 06 December 2012 (has links)
The main goal of this thesis is to develop practical digital controller architectures for multi-phase dc-dc converters utilized in low power (up to few hundred watts) and cost-sensitive applications. The proposed controllers are suitable for on-chip integration while being capable of providing advanced features, such as dynamic efficiency optimization, inductor current estimation, converter component identification, as well as combined dynamic current sharing and fast transient response. The first part of this thesis addresses challenges related to the practical implementation of digital controllers for low-power multi-phase dc-dc converters. As a possible solution, a multi-use high-frequency digital PWM controller IC that can regulate up to four switching converters (either interleaved or standalone) is presented. Due to its configurability, low current consumption (90.25 μA/MHz per phase), fault-tolerant work, and ability to operate at high switching frequencies (programmable, up to 10 MHz), the IC is suitable to control various dc-dc converters. The applications range from dc-dc converters used in miniature battery-powered electronic devices consuming a fraction of watt to multi-phase dedicated supplies for communication systems, consuming hundreds of watts. A controller for multi-phase converters with unequal current sharing is introduced and an efficiency optimization method based on logarithmic current sharing is proposed in the second part. By forcing converters to operate at their peak efficiencies and dynamically adjusting the number of active converter phases based on the output load current, a significant improvement in efficiency over the full range of operation is obtained (up to 25%). The stability and inductor current transition problems related to this mode of operation are also resolved. At last, two reconfigurable digital controller architectures with multi-parameter estimation are introduced. Both controllers eliminate the need for external analog current/temperature sensing circuits by accurately estimating phase inductor currents and identifying critical phase parameters such as equivalent resistances, inductances and output capacitance. A sensorless non-linear, average current-mode controller is introduced to provide fast transient response (under 5 μs), small voltage deviation and dynamic current sharing with multi-phase converters. To equalize the thermal stress of phase components, a conduction loss-based current sharing scheme is proposed and implemented.
4

Sensorless Stator Winding Temperature Estimation for Induction Machines

Gao, Zhi 17 October 2006 (has links)
The organic materials used for stator winding insulation are subject to deterioration from thermal, electrical, and mechanical stresses. Stator winding insulation breakdown due to excessive thermal stress is one of the major causes of electric machine failures; therefore, prevention of such a failure is crucial for increasing machine reliability and minimizing financial loss due to motor failure. This work focuses on the development of an efficient and reliable stator winding temperature estimation scheme for small to medium size mains-fed induction machines. The motivation for the stator winding temperature estimation is to develop a sensorless temperature monitoring scheme and provide an accurate temperature estimate that is capable of responding to the changes in the motors cooling capability. A discussion on the two major types of temperature estimation techniques, thermal model-based and parameter-based temperature techniques, reveals that neither method can protect motors without sacrificing the estimation accuracy or motor performance. Based on the evaluation of the advantages and disadvantages of these two types of temperature estimation techniques, a new online stator winding temperature estimation scheme for small to medium size mains-fed induction machines is proposed in this work. The new stator winding temperature estimation scheme is based on a hybrid thermal model. By correlating the rotor temperature with the stator temperature, the hybrid thermal model unifies the thermal model-based and the parameter-based temperature estimation techniques. Experimental results validate the proposed scheme for stator winding temperature monitoring. The entire algorithm is fast, efficient and reliable, making it suitable for implementation in real time stator winding temperature monitoring.
5

Design and Practical Implementation of Advanced Reconfigurable Digital Controllers for Low-power Multi-phase DC-DC Converters

Lukic, Zdravko 06 December 2012 (has links)
The main goal of this thesis is to develop practical digital controller architectures for multi-phase dc-dc converters utilized in low power (up to few hundred watts) and cost-sensitive applications. The proposed controllers are suitable for on-chip integration while being capable of providing advanced features, such as dynamic efficiency optimization, inductor current estimation, converter component identification, as well as combined dynamic current sharing and fast transient response. The first part of this thesis addresses challenges related to the practical implementation of digital controllers for low-power multi-phase dc-dc converters. As a possible solution, a multi-use high-frequency digital PWM controller IC that can regulate up to four switching converters (either interleaved or standalone) is presented. Due to its configurability, low current consumption (90.25 μA/MHz per phase), fault-tolerant work, and ability to operate at high switching frequencies (programmable, up to 10 MHz), the IC is suitable to control various dc-dc converters. The applications range from dc-dc converters used in miniature battery-powered electronic devices consuming a fraction of watt to multi-phase dedicated supplies for communication systems, consuming hundreds of watts. A controller for multi-phase converters with unequal current sharing is introduced and an efficiency optimization method based on logarithmic current sharing is proposed in the second part. By forcing converters to operate at their peak efficiencies and dynamically adjusting the number of active converter phases based on the output load current, a significant improvement in efficiency over the full range of operation is obtained (up to 25%). The stability and inductor current transition problems related to this mode of operation are also resolved. At last, two reconfigurable digital controller architectures with multi-parameter estimation are introduced. Both controllers eliminate the need for external analog current/temperature sensing circuits by accurately estimating phase inductor currents and identifying critical phase parameters such as equivalent resistances, inductances and output capacitance. A sensorless non-linear, average current-mode controller is introduced to provide fast transient response (under 5 μs), small voltage deviation and dynamic current sharing with multi-phase converters. To equalize the thermal stress of phase components, a conduction loss-based current sharing scheme is proposed and implemented.

Page generated in 0.1178 seconds