• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 11
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vers l’Extrapolation à l’échelle continentale de l’impact des overshoots sur le bilan de l’eau stratosphérique / Toward the upscaling of the impact of overshoots on the stratospheric water budgetat a continental scale

Behera, Abhinna 12 February 2018 (has links)
Cette thèse a pour but de préparer un travail d’extrapolation de l’impact des overshoots stratosphériques (SOC) sur le bilan de vapeur d’eau (VE) dans la couche de la tropopause tropicale (TTL) et dans la basse stratosphère à l’échelle continentale.Pour ce faire, nous profitons des mesures de la campagne de terrain TRO-Pico tenue à Bauru, au Brésil, pendant deux saisons convectives/humides en 2012 et 2013, et de plusieurs simulations numériques de la TTL sur un domaine englobant une grande partie de l’Amérique du Sud avec le modèle méso-échelle BRAMS.Premièrement, nous effectuer une simulation d’une une saison humide complète sans tenir compte des SOC. Cette simulation est ensuite évaluée pour d’autres caractéristiques clés typiques (température de la TTL, VE, sommets de nuages et ondes de gravité) dans la TTL. En l’absence de SOC et avant d’extrapoler son leur impact, nous démontrons que le modèle reproduit correctement les caractéristiques principales de la TTL. L’importance de l’ascension lente à grande échelle par rapport aux processus convectifs profonds à échelle finie est ensuite discutée.Deuxièmement, à partir de simulations BRAMS à fine à échelle de cas de SOC observés pendant TRO-Pico, nous déduisons des quantités physiques (flux de glace, bilan de masse de glace, tailles des SOCs), qui serviront à définir un forçage de l’impact des overshoots dans des simulations à grande échelle. Nous montrons un impact maximum d’environ 2 kt en VE et 6 kt de glace par SOC. Ces chiffres sont 30% nférieurs pour un autre réglage microphysique du modèle. Nous montrons que seul trois types d’hydrométéores du modèle contribuent à cette hydratation. / This dissertation aims at laying a foundation on upscaling work of the impact of stratospheric overshooting convection (SOC) on the water vapor budget in the tropical tropopause layer (TTL) and lower stratosphere at a continental scale.To do so, we take advantage of the TRO-Pico field campaign measurements held at Bauru, Brazil, during two wet/convective seasons in 2012 and 2013, and perform accordingly several numerical simulations of the TTL which encompass through a large part of south America using the BRAMS mesoscale model.Firstly, we adopt a strategy of simulating a full wet season without considering SOC. This simulation is then evaluated for other typical key features (e.g., TTL temperature, convective clouds, gravity wave) of the TTL. In the absence of SOC and before upscaling its impact, we demonstrate that the model has a fair enough ability to reproduce a typical TTL. The importance of large-scale upwelling in comparison to the finite-scale deep convective processes is then discussed.Secondly, from fine scale BRAMS simulations of an observational case of SOC during TRO-Pico, we deduce physical parameters (mass flux, ice mass budget, SOC size) that will be used to set a nudging of the SOC impact in large-scale simulations. A typical maximum impact of about 2kt of water vapor, and 6kt of ice per SOC cell is computed. This estimation is 30% lower for another microphysical setup of the model. We also show that the stratospheric hydration by SOC is mainly due to two types of hydrometeors in the model.
2

The transition between sharp and diffusive wetting fronts as a function of imbibing fluid properties

Aminzadeh-Goharrizi, Behdad 22 September 2010 (has links)
The efficiency of one fluid displacing another in a permeable medium depends on the pore-scale dynamics at the main wetting front. Experiments have shown that the frontal dynamics can result in two different flow regimes: a sharp and a diffuse front. In the sharp front regime, the displacing fluid occupies nearly all the pores and throats behind the main wetting front and the saturation changes abruptly. In contrast, in the diffuse front regime, pores are filled gradually at the main wetting front, and the saturation change is gradual in space. The different fronts can greatly alter the relative permeability curves, the trapping mechanisms, and the displacement efficiency. Directly measuring the sharpness of the front is difficult. Instead, here we correlate the front sharpness to saturation overshoot, which occurs for moderate to high flux vertical displacements of low density fluid by a higher density fluid in 1-D homogeneous permeable media. We hypothesize the sharpness of wetting front can be explained by competition between two different pore - filling mechanisms (called snap-off and piston-like) with the competition controlled by the velocity of the front and thus the injected flux. We conduct series of infiltration experiments to determine the saturation profile as a function of flux for seven different fluids. We find that for each fluid there is a flux (called overshoot flux) below which saturation overshoot ceases and the front is diffuse. We find that the overshoot flux depends inversely on the invading fluid’s viscosity, and shows little or no dependence on the invading fluid’s surface tension, vapor pressure, and its miscibility with water / text
3

Experimental measurement of sweep efficiency during multi-phase displacement in the presence of nanoparticles

Aminzadeh Goharrizi, Behdad 24 July 2013 (has links)
The efficiency of one fluid displacing another in permeable media depends greatly on the pore-scale dynamics at the main wetting front. Experiments have shown that the frontal dynamics can result in two different flow regimes: a stable and an unstable front. In stable displacements, any perturbation of the front will diminish with time and the effect of variation in permeability will be lessened. In contrast, in unstable displacements any perturbation of the front will grow with time and any variation in permeability will be magnified. In this dissertation, the stability of two different displacement processes are contemplated; a) vertical infiltration of dense liquid into dry sand from above and b) horizontal displacement of nanoparticle suspension with high pressure liquid CO₂. Significant insights are obtained by measuring the in-situ flow patterns in real time with a light transmission method and CT scanning. Vertical infiltration of dense fluid into dry sands from above is often observed to be unstable and produce gravity driven fingers. The formation of gravity fingers can have large consequences on the sweep efficiency of a displacement. Infiltration experiments showed that gravity driven fingers have a unique saturation profile known as saturation overshoot with a higher saturation at the finger tips than the saturation at the finger tail. Despite the vast number of theoretical and experimental investigations, conditions under which the front is unstable, remain unclear. To determine what controls the saturation overshoot and how it relates to the dynamics at the initial wetting front, saturation overshoot was measured as a function of flux for seven different liquids. These liquids gave a range of molecular weights, viscosities, and vapor pressures. It is found that for each fluid there is a flux (called overshoot flux) below which saturation overshoot ceases and the front is diffuse. The magnitude of the overshoot flux depends inversely on the invading fluid's viscosity and shows little or no dependence on the invading fluid's surface tension, vapor pressure, or miscibility with water. Since the saturation overshoot is not described by the continuum multi-phase flow models, the experimental results are used to develop a semi-continuum model that bridges the continuum-scale and pore-scale physics. The proposed model predicts the observed dependence of overshoot on media permeability and invading fluid properties. At the planned depth for CO₂ injection, either as an enhanced oil recovery technique or for CO₂ storage, CO₂ is typically less dense and less viscous than the in-situ fluid. Therefore, CO₂ injection is unstable and produces viscous fingers. This can greatly reduce the efficiency of a CO₂ flood or CO₂ storage capacity of an aquifer. To remedy this behavior, surface treated nanoparticles were used to reduce the mobility of injected CO₂. Displacement experiments were performed at low pressure with a CO₂ analogue (n-octane) fluid and at high pressure with liquid CO₂. Saturation distributions and pressure drops were measured in real time with the CT scanner when high pressure liquid CO₂ or n-octane was used to displace brine in different cores with and without suspended nanoparticles. In the presence of nanoparticles, the displacement front is more spatially uniform with a later breakthrough compared to the same experiment with no suspended nanoparticles. These observations suggest that nanoparticle stabilized foam, which forms during the displacement, acts to suppress the instability. It is argued that the generation of droplets occurs at the leading front of all drainage displacements. In the presence of nanoparticles, these droplets are preserved when nanoparticle adhere at the fluid-fluid interface. The new mechanism for foam generation described here, provides an interesting alternative for mobility control in CO₂ floods. Moreover, the same mechanism can potentially a) increase the CO₂ storage capacity of an aquifer, b) enhance the CO₂ capillary trapping, and c) provide an engineered barrier to CO₂ leakage from a storage sites, thereby alleviating the risk of contaminating the overlying fresh groundwater resources for CO₂ storage projects. / text
4

Optimisation of the VARTM process

Struzziero, Giacomo January 2014 (has links)
This study focuses on the development of a multi-objective optimisation methodology for the vacuum assisted resin transfer moulding composite processing route. Simulations of the cure and filling stages of the process have been implemented and the corresponding heat transfer and flow through porous media problems solved by means of finite element analysis. The simulations involved material sub-models to describe thermal properties, cure kinetics and viscosity evolution. A Genetic algorithm which constitutes the foundation for the development of the optimisation has been adapted, implemented and tested in terms of its effectiveness using four benchmark problems. Two methodologies suitable for multi-objective optimisation of the cure and filling stages have been specified and successfully implemented. In the case of the curing stage the optimisation aims at finding a cure profile minimising both process time and temperature overshoot within the part. In the case of the filling stage the thermal profile during filling, gate locations and initial resin temperature are optimised to minimise filling time and final degree of cure at the end of the filling stage. Investigations of the design landscape for both curing and filling stage have indicated the complex nature of the problems under investigation justifying the choice for using a Genetic algorithm. Application of the two methodologies showed that they are highly efficient in identifying appropriate process designs and significant improvements compared to standard conditions are feasible. In the cure process an overshoot temperature reduction up to 75% in the case of thick component can be achieved whilst for a thin part a 60% reduction in process time can be accomplished. In the filling process a 42% filling time reduction and 14% reduction of degree of cure at the end of the filling can be achieved using the optimisation methodology. Stability analysis of the set of solutions for the curing stage has shown that different degrees of robustness are present among the individuals in the Pareto front. The optimisation methodology has also been integrated with an existing cost model that allowed consideration of process cost in the optimisation of the cure stage. The optimisation resulted in process designs that involve 500 € reduction in process cost. An inverse scheme has been developed based on the optimisation methodology aiming at combining simulation and monitoring of the filling stage for the identification of on-line permeability during an infusion. The methodology was tested using artificial data and it was demonstrated that the methodology is able to handle levels of noise from the measurements up to 5 s per sensor without affecting the quality of the outcome.
5

Circuit Level Reliability Considerations in Wide Bandgap Semiconductor Devices

Dhakal, Shankar January 2018 (has links)
No description available.
6

DEFINITION ET MISE AU POINT D'UNE SONDE MINI-SAOZ POUR L'ETUDE DE L'IMPACT DES ORAGES TROPICAUX SUR LA COMPOSITION CHIMIQUE DE LA STRATOSPHERE

Vicomte, Marie 07 May 2013 (has links) (PDF)
Les overshoots convectifs sont des phénomènes connus depuis longtemps au-dessus des continents tropicaux. Ils sont soupçonnés d'être une source majeure dans la basse stratosphère des espèces à courte durée de vie de la troposphère, de l'humidification par injection de cristaux de glace, et de NOx formés par la foudre. Cependant les mesures dans ces systèmes convectifs n'est pas une tâche facile. Le mini-SAOZ est un spectromètre UV-Visible développé au LATMOS depuis 2009 avec une technologie avancée. Il est conçu pour les mesures des profils atmosphériques des espèces chimiques mineures (O3, H2O, NO2, O2, O4, BrO, OClO, CH2O) par occultation solaire. Ses nouvelles performances et son faible poids permettent de l'intégrer sous de petits ballons pour étudier la convection tropicale. Deux vols d'essai ont été réalisés à Kiruna en 2010 et 2011 avec le soutien du CNES. Les résultats de l'analyse spectrale et les différents problèmes rencontrés lors de ces vols ont permis de nettes améliorations de la sonde afin qu'elle soit qualifiée pour les vols suivants aux tropiques. Deux vols du mini-SAOZ ont été opérés au cours de la campagne TRO-pico, en 2012, dont l'objectif était de mieux comprendre l'impact de la convection tropicale sur la composition chimique stratosphérique. Les comparaisons avec d'autres instruments valident les performances du mini-SAOZ. Cependant, les mesures obtenues au cours de cette thèse n'ont pas encore permis de montrer avec certitude les mécanismes liés à la convection tropicale.
7

Visual discomfort whilst viewing 3D stereoscopic stimuli

Karpicka, Edyta January 2015 (has links)
3D stereoscopic technology intensifies and heightens the viewer s experience by adding an extra dimension to the viewing of visual content. However, with expansion of this technology to the commercial market concerns have been expressed about the potential negative effects on the visual system, producing viewer discomfort. The visual stimulus provided by a 3D stereoscopic display differs from that of the real world, and so it is important to understand whether these differences may pose a health hazard. The aim of this thesis is to investigate the effect of 3D stereoscopic stimulation on visual discomfort. To that end, four experimental studies were conducted. In the first study two hypotheses were tested. The first hypothesis was that the viewing of 3D stereoscopic stimuli, which are located geometrically beyond the screen on which the images are displayed, would induce adaptation changes in the resting position of the eyes (exophoric heterophoria changes). The second hypothesis was that participants whose heterophoria changed as a consequence of adaptation during the viewing of the stereoscopic stimuli would experience less visual discomfort than those people whose heterophoria did not adapt. In the experiment an increase of visual discomfort change in the 3D condition in comparison with the 2D condition was found. Also, there were statistically significant changes in heterophoria under 3D conditions as compared with 2D conditions. However, there was appreciable variability in the magnitude of this adaptation among individuals, and no correlation between the amount of heterophoria change and visual discomfort change was observed. In the second experiment the two hypotheses tested were based on the vergence-accommodation mismatch theory, and the visual-vestibular mismatch theory. The vergence-accommodation mismatch theory predicts that a greater mismatch between the stimuli to accommodation and to vergence would produce greater symptoms in visual discomfort when viewing in 3D conditions than when viewing in 2D conditions. An increase of visual discomfort change in the 3D condition in comparison with the 2D condition was indeed found; however the magnitude of visual discomfort reported did not correlate with the mismatch present during the watching of 3D stereoscopic stimuli. The visual-vestibular mismatch theory predicts that viewing a stimulus stereoscopically will produce a greater sense of vection than viewing it in 2D. This will increase the conflict between the signals from the visual and vestibular systems, producing greater VIMS (Visually- Induced Motion Sickness) symptoms. Participants did indeed report an increase in motion sickness symptoms in the 3D condition. Furthermore, participants with closer seating positions reported more VIMS than participants sitting farther away whilst viewing 3D stimuli. This suggests that the amount of visual field stimulated during 3D presentation affects VIMS, and is an important factor in terms of viewing comfort. In the study more younger viewers (21 to 39 years old) than older viewers (40 years old and older) reported a greater change in visual discomfort during the 3D condition than the 2D condition. This suggests that the visual system s response to a stimulus, rather than the stimulus itself, is a reason for discomfort. No influence of gender on viewing comfort was found. In the next experiment participants fusion capability, as measured by their fusional reserves, was examined to determine whether this component has an impact on reported discomfort during the watching of movies in the 3D condition versus the 2D condition. It was hypothesised that participants with limited fusional range would experience more visual discomfort than participants with a wide fusion range. The hypothesis was confirmed but only in the case of convergent and not divergent eye movement. This observation illustrates that participants capability to convergence has a significant impact on visual comfort. The aim of the last experiment was to examine responses of the accommodation system to changes in 3D stimulus position and to determine whether discrepancies in these responses (i.e. accommodation overshoot, accommodation undershoot) could account for visual discomfort experienced during 3D stereoscopic viewing. It was found that accommodation discrepancy was larger for perceived forwards movement than for perceived backwards movement. The discrepancy was slightly higher in the group susceptible to visual discomfort than in the group not susceptible to visual discomfort, but this difference was not statistically significant. When considering the research findings as a whole it was apparent that not all participants experienced more discomfort whilst watching 3D stereoscopic stimuli than whilst watching 2D stimuli. More visual discomfort in the 3D condition than in the 2D condition was reported by 35% of the participants, whilst 24% of the participants reported more headaches and 17% of the participants reported more VIMS. The research indicates that multiple causative factors have an impact on reported symptoms. The analysis of the data suggests that discomfort experienced by people during 3D stereoscopic stimulation may reveal binocular vision problems. This observation suggests that 3D technology could be used as a screening method to diagnose un-treated binocular vision disorder. Additionally, this work shows that 3D stereoscopic technology can be easily adopted to binocular vision measurement. The conclusion of this thesis is that many people do not suffer adverse symptoms when viewing 3D stereoscopic displays, but that if adverse symptoms are present they can be caused either by the conflict in the stimulus, or by the heightened experience of self-motion which leads to Visually-Induced Motion Sickness (VIMS).
8

Modeling and Characterization of Circuit Level Transients in Wide Bandgap Devices

Koganti, Naga Babu January 2018 (has links)
No description available.
9

Ressources et populations, réflexions sur la notion de

Lavaud, Jacques 24 April 2012 (has links) (PDF)
Cette thèse cherche à interroger un thème crucial et souvent interdit : le rapport entre surpopulation globale et réalisme écologique. En suivant une recherche multidisciplinaire, elle propose une réflexion sur l'effet conjoint de la consommation et de la dégradation des ressources tant renouvelables que non renouvelables, due à l'augmentation exponentielle de la population humaine. Par une approche initialement diachronique (étude de l'état de la Terre depuis le 15e siècle, où l'homme commence à avoir une idée de sa clôture et de sa finitude, sur un lieu défini (Haïti)), puis diatopique (étude de la situation dans divers pays aujourd'hui), et enfin diaculturelle (étude de diverses politiques de gestion des ressources et de leur impact écologique), elle dresse un bilan historique et comparatif des technologies et de leur rôle dans le phénomène de destruction de la biosphère. Elle aboutit à la proposition d'une Organisation Mondiale de la Population (OMP), une sorte d'instrument de gouvernance mondiale (comparable à l'OMS, l'OMC, etc.) élaborant des directives sur la gestion de l'évolution de la population terrestre. Elle finit par argumenter sur la nécessité d'une révision de la Déclaration Universelle des Droits de l'Homme au profit de quelque " Déclaration Universelle des Droits de l'Humanité ".
10

Řízení pohybu při přemisťování zavěšeného předmětu / Motion control during hanged object transportation

Richter, Jan January 2010 (has links)
The Diploma Thesis focuses on examination of most suitable optionsof movement regulation of pendent object from the perspective of various requirements on the course of the process as such. The environment of Matlab-Simulink was used for the analysis. The first part of the Thesis deals with the creation of the model of the whole system and creation of additional models of systems with similar, highly oscillating behaviour. The central part of the Thesis focuses on the design of suitable methods of movement regulation during translocation of the pendent object, which is tested on a simple model of travelling monkey. Four approaches to the problem solving were chosen: simple regulation by PID regulator, branched regulation, state regulation and predicative regulation. All solving options are being analysed and optimised and their results mutually compared according to requirements defined, such as: speed of the process, fluency of the movement, small pose overshoot or small angle of rope deflection.

Page generated in 0.0606 seconds