• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1672
  • 793
  • 267
  • 72
  • 66
  • 59
  • 33
  • 28
  • 18
  • 15
  • 13
  • 12
  • 10
  • 9
  • 8
  • Tagged with
  • 3393
  • 3393
  • 1588
  • 1499
  • 325
  • 320
  • 259
  • 252
  • 234
  • 231
  • 226
  • 216
  • 213
  • 202
  • 195
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
591

Modulating factors of serum oxysterol concentrations in daughters from gestational diabetes and non-gestational diabetes

Alkazemi, Dalal Usamah Zaid January 2007 (has links)
No description available.
592

The Effects of Isoflavone Supplementation on Rats and Humans

Chen, Chung-Yen 16 August 2001 (has links)
Isoflavones have antioxidant activities in vivo, however, their antioxidative potential against oxidative stress initiated by exercise was not explored. The first study investigated the effect of high-genistin isoflavone (HGI) supplementation on erythrocyte antioxidant enzymes and tissues' thiobarbituric reactive substances (TBARS) in acutely exercised one-year old rats. All tissue genistein concentrations increased after exercise. Ingestion of HGI seemingly enhanced running time to exhaustion, and maintained glutathione peroxidase (GPx) and catalase (CAT) activities decreased due to exercise. The second study investigated the dose effect of HGI supplementation. Genistein concentrations were significantly higher (P<0.05) in tissues of rats fed the 1045 PPM HGI diet than in rats fed 522 or 209 PPM HGI diets and increased the glutathione (GSH)/total glutathione (TGSH) ratio (P<0.03). Reductions of the in vivo MDA concentrations (P<0.05) were observed only in the plasma of rats fed 522 and 1045 PPM HGI diets compared to those fed 0 PPM (-1.08, -0.82, and 0.03 mM, respectively). Therefore, isoflavones at 522-1045 PPM HGI diet have antioxidative effects in rats. The last two studies investigated the effect of isoflavone supplementation on the modulation of erythrocyte antioxidant enzyme activities, glutathione homeostasis, and other oxidative biomolecules in healthy young men undergoing 80%VO2pk exercise. In Study 3 exercise at 80%VO2pk increased oxidative stress which was best demonstrated by increased superoxide dismutase (SOD) activity (16.5%), GSH/TGSH ratio, in vivo MDA (12.6%), plasma uric acid (4.9%) and ferric reducing/antioxidant ability (FRAP) ( 7.8%). Therefore, 30 minutes 80% VO2pk exercise induced oxidative stress in moderately active college men. In study 4, four-week HGI supplementation produced plasma genistein and daidzein concentrations of 499 and 415 ng/ml, which were significantly increased to 633 and 539 ng/ml by exercise (P=0.04 and P=0.05). Isoflavones significantly decreased in vivo pre-exercise plasma MDA (P<0.05), increased pre-exercise blood TGSH (P=0.01) and pre-exercise erythrocyte SOD activity (P=0.0006), and maintained the decreased activities of GPx due to exercise at pre-exercise levels. Results demonstrated that isoflavones had antioxidant activity in vivo under normal physiological conditions in healthy young men. They also maintaining GPx activity which was decreased due to exercise, however, isoflavones may not overcome all oxidative stress initiated by intense exercise. / Ph. D.
593

Proteome Profiling of Saccharomyces cerevisae stress response to Cumene Hydroperoxide (CHP)

Tuli, Leepika 09 September 2008 (has links)
Oxidative stress, described as the state of disturbed intracellular redox balance, has been associated with several human conditions including ageing, apoptosis, cancer, autoimmune and neuro-degenerative diseases. Stress studies have shown that reactive oxygen species (ROS) and reactive nitrogen species (RNS) along with its intermediates can attack essential cell targets such as: DNA, proteins, lipids and carbohydrates, leaving behind dysfunctional biologic molecules. In effect, a cell's primary response is to involve several defense mechanisms that are under a complex and intricate regulatory control to repair any damages that may have occurred. Although several stress studies have been conducted in the past that have approached this biologically complex process step by step, application of a Systems Biology towards a comprehensive understanding is still emerging. The current objective of this project is to identify proteins that change in response to cumene hydroperxoide (CHP) treatment and in parallel make an attempt to uncover events and processes that are a part of CHP-induced oxidative stress response. From a systems biology viewpoint, the Yeast Oxidative Stress project will monitor response at three different levels: transcriptomics, proteomics and metabolomics, with dynamic changes being measured from 3 to 120 min after CHP addition. Data collected from the different levels will be integrated to accomplish a holistic viewpoint of stress response in the given system and to develop mathematical tools for modeling biochemical networks. Saccharomyces cerevisiae was chosen as a model, based on its availability of a completely mapped genome sequence with a collection of null mutants that was relevant to our fundamental research of stress response mechanism. Yeast, a simple unicellular eukaryote has been extensively used for applied studies and has proven to be indispensable for stress research. Information derived from this project can reveal response mechanisms used by higher eukaryotes, especially if via analogous signaling cascades that are comparable between organisms. Current research investigates an optimal workflow for generating 2D gel based protein expression data and identifying proteins that are induced by cumene hydroperoxide treatment. A non-targeted protein profiling followed by a 2-way ANOVA analysis provided a list of proteins that differ significantly between treatments. Protein identification provided relevant information on which proteins are affected by CHP induced stress response, including posttranslational modifications of peroxiredoxins. Redox active protein, Ahp1, was regulated post-translationally with sulfonic acid modification observed for its active Cys(62) residue. / Ph. D.
594

The Effects of Cell Culture Oxygen Levels on the Replicative Senescence Processes of Primary Human Fibroblasts

Stab II, Bernd Robert 24 August 2009 (has links)
Serial passaging of primary human fibroblasts leads to the formation of non-dividing senescent cells by a process termed replicative senescence. This tissue culture-based methodology is currently used as a model system to determine the underlying mechanisms of in vivo cellular aging and tumor suppression. Senescence is regarded as an alternative pathway to apoptosis, where cells undergo multiple changes in metabolic and cellular signaling pathways in order to prevent proliferation but still maintain a metabolically-active cell. Whether or not this model accurately reflects in vivo processes is presently controversial; however, replicative senescence is currently the most applicable model through which one can investigate the underlying causes of human cellular aging in the context of controlled environmental stress over time. This work was directed at understanding the molecular processes involved in replicative senescence with specific emphasis on the role of the mitochondria. A series of experiments were performed to assess changes during the induction of replicative senescence under conditions of low (3%) and high (20%) oxygen levels. Measurements were made at the transcriptional, protein, and metabolite levels. Microscopy wasalso utilized to monitor changes in mitochondrial morphology and volume. While previous studies have evaluated specific pathways and/or products; this work combines a more complete metabolomic, genomic, proteomic, and morphological picture of cells undergoing senescence and oxidative stress. Considering the low cell population densities of primary adherent fibroblasts and the subsequent low concentrations of small polar metabolites involved in glycolysis and the TCA cycle, methodologies needed to be developed in order to optimize metabolite extraction and liquid chromatography-mass spectrometric analysis. Protein kinase and transcriptional microarrays were also performed in order to quantify the changes in activated/deactivated signaling cascades as well as gene expression and relate these findings to metabolomic data. Mitochondrial dynamics of cells at different age time points and under different oxygen conditions were also assessed including mitochondrial size, shape, membrane potential, and percent volume per cell volume using confocal microscopy. The results obtained not only confirm the major pathways involved in senescence (p53/p21, PTEN/p27, and RTK/Raf/MAPK) but also provide evidence at both the transcriptional and protein levels for additional senescence-associated pathways. The majority of the changes observed were related to pathways involved in cellular stress, cell cycle control, and the survival response. Metabolic data suggested a –pooling effect– of glycolysis and TCA precursor molecules due to attenuation in enzyme function; this theory was also supported by an observed up regulation of gene expression as a compensatory mechanism. Mitochondria exhibited changes in membrane potential as well as volume and percent volume per cell which suggested compensatory hypertrophy and/or attenuation of mitochondrial fission processes. When the aforementioned analyses are tied together, a “theoretical model of senescence” can be formulated and is characterized by increased metabolic protein and associated metabolite levels due to attenuation in their respective enzyme function, resulting in increases in expression of their associated genes as a compensatory mechanism. / Ph. D.
595

Oxidative Stress and Antioxidant Supplementation During Endurance Exercise in the Horse

Williams, Carey Ann 29 July 2003 (has links)
In these studies antioxidant supplementation and oxidative stress measures were the basis for determining the health and welfare of the equine endurance athlete. The first study determined that lipoic acid (LA) orally administered to horses is effective in diminishing the levels of lipid peroxidation in the plasma, and is non-toxic at a dose of 10-mg/kg body weight. The second study showed muscle leakage measured by plasma creatine kinase (CK) and aspartate aminotransferase (AST) positively correlated to oxidative stress (measured by lipid hydroperoxides) during an endurance race (Research Ride 2001; R1). Also higher plasma ascorbate (ASC) status was found in the vitamin E plus C supplemented group versus the group receiving vitamin E alone. In the third study, the Research Ride 2002 (R2) determined that horses that did not finish the ride had higher CK and AST before, during and after (P < 0.05) the ride compared to horses that finished. These results were compared to the finishers of the Old Dominion 2000 (OD) and R1 and found that oxidative stress and muscle enzymes were greater during R2 due to the difficulty of terrain and ambient temperature. A higher level of horses' fitness in OD also could have explained the diminished oxidative stress. The fourth study calculated that horses at R2 were receiving 2265 ± 114 IU/d of vitamin E in the total diet prior to the race. These levels negatively correlated to plasma CK and AST and positively correlated to plasma a-tocopherol (TOC; r = 0.21; P = 0.005) throughout the 80-km race. In the final study the LA supplemented group had similar increases in antioxidant status (TOC, ASC, and total glutathione) as the vitamin E supplemented group of horses exercising for 55 km on a treadmill to simulate an endurance race. Both groups also had lower (P < 0.050) white blood cell apoptosis throughout exercise then the control group. These studies prove the need for antioxidant supplementation, specifically vitamin E or LA, during heavy endurance exercise to improve the health and welfare of our equine athlete. / Ph. D.
596

Pesticides and Pesticide Mixtures Induce Neurotoxicity: Potentiation of Apoptosis and Oxidative Stress

Jia, Zhenquan 14 September 2006 (has links)
Several epidemiological studies have suggested a role for environmental chemicals in the etiology of neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Endosulfan (an organochlorine) and zineb (zinc-ethylene-bis-dithiocarbamate) are used as pesticides on a variety of crops worldwide and pose potential health risks to humans and animals. Both endosulfan and zineb are known to affect nervous system. Because the dopaminergic system continues to develop postnatally, we hypothesized that developmental exposure to endosulfan or zineb alone or in combination would result in alteration of nigrostrial neurotransmitters and would render the nigrostrial dopamine system more susceptible to chemical challenge later in life. The objectives of this study were (1) to determine the effects of endosulfan and zineb individually and in combination on dopaminergic or cholinergic pathways in vivo, (2) to investigate the effects of exposure to endosulfan, zineb and their mixtures administered in early life (during brain development) on subsequent exposure to these pesticides on the dopaminergic and cholinergic systems, in vivo, (3) to investigate the mechanism(s) of induction of neuronal cell death caused by these pesticides using human neuroblastoma SH-SY5Y cells in culture, (4) to define the role of oxidative stress in pesticide-induced neuronal cell death in vitro. Male C57Bl/6 mice of 7-9 months old exposed to zineb (50 and 100 mg/kg), endosulfan (1.55, 3.1 and 6.2 mg/kg) and their mixtures every other day over a 2-week period exhibited higher levels of dopamine accumulation in the striatum. Both pesticide-treated groups displayed significantly lower norepinephrine levels in the striatum (Ï ≤ 0.05) than the controls. The developmental exposure to zineb, endosulfan and their combination enhanced the vulnerability to subsequent neurotoxic challenges occurring later in life. Thus, C57BL/6 mice exposed to zineb, endosulfan and their mixtures as juveniles (postnatal days 5 to 19) and re-exposed at 8 months of age showed a significant depletion of striatal dopamine, to 22%, 16%, and 35% of control, respectively. Acetylcholinesterase activity in the cerebral cortex was found to be significantly increased in all pesticide treated groups. Mice given mixtures of pesticides also showed significantly increased levels of normal and aggregated alpha-synuclein, a hallmark of neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. The results of these studies indicate that exposure to these pesticides as neonates and re-exposure as adults could result in neurochemical changes that did not reveal at adulthood when the exposure was at juvenile age only. We further investigated the mechanism(s) of activation of pesticide-induced neuronal cell death in vitro. The characteristic of cell death in SH-SY5Y human neuroblastoma cells was examined. These cells are known to retain catecholaminergic phenotype. Cells were exposed to endosulfan, zineb and mixtures of two pesticides, in concentrations ranging from 50 &#956;M to 400 &#956;M. These exposures caused both apoptotic and necrotic cell death in SH-SY5Y cells as evaluated by lactate dehydrogenase release, 7-aminoactinomycin-D and Annexin-V/PI assays. Exposure to mixtures of the pesticides enhanced both the early apoptosis and late apoptosis/necrosis compared to either chemical alone. Visual evaluation using DNA ladder assay and fluorescence Annexin V/PI assay confirmed the contribution of both apoptotic and necrotic events. Furthermore, endosulfan and zineb alone and in combination altered the caspase-3 activity indicating that both pesticides exposure exert their apoptotic effect via the caspase-3 pathway. Because there has been increasing evidence of the role of reactive oxygen species (ROS) and oxidative stress in pesticide-induced neuronal cell death (apoptosis and necrosis), the levels of ROS and antioxidant enzymes were examined. Cells treated with pesticides were found to enhance the generation of superoxide anion and hydrogen peroxide both in a dose- and time-dependent manner. Mixture of pesticides significantly enhanced the production of these reactive oxygen species compared to cells exposed to individual pesticide. Cells treated with pesticides showed a decrease in superoxide dismutase, glutathione peroxidase, and catalase levels. These pesticides also induced lipid peroxides (thiobarbituric acid reactive products) formation in SH-SY5Y cells. Furthermore, cells exposed to these pesticides were found to have increased in the expression of NFkappaB activity in the nucleus. These data support the hypothesis that oxidative stress was induced in neuronal cells by exposing to these pesticides in vitro. Taken together, the results of this study support the above hypothesis and suggest that the cytotoxicity of endosulfan and zineb and their combinations may, at least in part, be associated with the generation of ROS. Furthermore, mice exposed at early age and re-exposed at adulthood become more susceptible to alteration of neurotransmitter levels compared to mice exposed to these pesticides only as juveniles. These findings could add to the growing body of knowledge on the mechanism of pesticide-induced dopaminergic neuronal cell death and could hold tremendous implication for the future understanding of the possible involvement of environmental risk factors in the pathogenesis of Parkinson's disease. / Ph. D.
597

Microarray data analysis methods and their applications to gene expression data analysis for Saccharomyces cerevisiae under oxidative stress

Sha, Wei 12 June 2006 (has links)
Oxidative stress is a harmful condition in a cell, tissue, or organ, caused by an imbalance between reactive oxygen species or other oxidants and the capacity of antioxidant defense systems to remove them. These oxidants cause wide-ranging damage to macromolecules, including proteins, lipids, DNA and carbohydrates. Oxidative stress is an important pathophysiologic component of a number of diseases, such as Alzheimer's disease, diabetes and certain cancers. Cells contain effective defense mechanisms to respond to oxidative stress. Despite much accumulated knowledge about these responses, their kinetics, especially the kinetics of early responses is still not clearly understood. The Yap1 transcription factor is crucial for the normal response to a variety of stress conditions including oxidative stress. Previous studies on Yap1 regulation started to measure gene expression profile at least 20 minutes after the induction of oxidative stress. Genes and pathways regulated by Yap1 in early oxidative stress response (within 20 minutes) were not identified in these studies. Here we study the kinetics of early oxidative stress response induced by the cumene hydroperoxide (CHP) in Saccharomyces cerevisiae wild type and yap1 mutant. Gene expression profiles after exposure to CHP were obtained in controlled conditions using Affymetrix Yeast Genome S98 arrays. The oxidative stress response was measured at 8 time points along 120 minutes after the addition of CHP, with the earliest time point at 3 minute after the exposure. Statistical analysis methods, including ANOVA, k-means clustering analysis, and pathway analysis were used to analyze the data. The results from this study provide a dynamic resolution of the oxidative stress responses in S. cerevisiae, and contribute to a richer understanding of the antioxidant defense systems. It also provides a global view of the roles that Yap1 plays under normal and oxidative stress conditions. / Ph. D.
598

Immunotoxicity of Pesticide Mixtures and the Role of Oxidative Stress

Olgun, Selen 18 March 2004 (has links)
The immunotoxic effects of multiple pesticide exposure were evaluated. C57BL/6 mouse thymocytes were exposed to lindane, malathion, and permethrin, either separately or in mixtures of two pesticides, in concentrations ranging from 37.5 uM to 1mM. These exposures caused both apoptotic and necrotic cell death in thymocytes as evaluated by 7-aminoactinomycin-D, Annexin-V/PI, and lactate dehydrogenase release assays. When cells were exposed to lindane+malathion, or lindane+permethrin, a significantly greater-than-additive cytotoxicity was observed. The pesticide exposure caused DNA ladder formation with increased laddering in mixtures. Further, the effect of these pesticides on thymocyte oxidative stress was investigated. Thymocytes treated with any of these pesticides generated superoxide and H2O2. The lindane + malathion caused more-than-additive increase in superoxide production compared to single treatments of these pesticides. However, the effect of the lindane + permethrin was not significantly different from individual components of this mixture. The effects of pesticides on antioxidant enzymes were also investigated and only mixtures were found to have significant effects. Alteration in transcription factor NFkB level was measured as an indicator of oxidative stress in thymocytes following 12 h pesticide exposure, in vitro. Only lindane + malathion was found to increase the protein level. Furthermore, the effects of pesticides and their mixtures on immune functions of mice were studied in vivo. Animals (8-12 week old, male mice) were randomly divided into groups of six and injected intraperitoneally with three different doses (one-half, one-third, one-fourth, or one-eight of LD50) of individual pesticides. Exposure to individual pesticides did not alter the thymus/body or spleen/body weight ratios, thymic or splenic cell counts, or CD4/CD8 or CD45/CD90 ratios. However, anti-sRBC plaque forming cell (PFC) counts were significantly lowered with all treatments. Two other groups of animals were injected with lindane + malathion or lindane + permethrin at one-third of the LD50 of each pesticide. Exposure to pesticide mixtures did not alter the CD4/CD8 or CD45/CD90 ratios. However, the thymus/ and spleen/body weight ratios, thymic and splenic cell counts, and PFC counts were significantly lowered. These data indicate that lindane, malathion, and permethrin are immunotoxic and their mixtures can cause higher toxicity compared to individual exposures. In addition, these data support the hypothesis that oxidative stress were induced in thymocytes by exposure to these pesticides in vitro. / Ph. D.
599

The Development of a Bacterial Biosensor Designed to Detect Oxidative Chemicals in Water: Correlating Sensor Relevance to Mammalian Brain Cells and Assessing Bacterial Cell Immobilization Strategies

Ikuma, Kaoru 03 October 2007 (has links)
Oxidative stress-inducing chemical contamination in the environment is a significant concern for public health. The depletion of antioxidants by these chemicals results in oxidative stress which may cause detrimental effects in many cell types. For example, multiple stress responses may be activated in bacteria and several disorders including neurodegenerative disorders may occur in mammalian organisms. Oxidative chemicals also have negative effects on engineered water systems as an oxidative stress response in bacteria has been implicated to cause process failure in wastewater treatment facilities. Therefore, it is essential to monitor oxidative chemical contamination in water environments to provide early warning of potential negative effects. Whole-cell biosensors that indicate bacterial stress responses to oxidative toxic agents can be powerful tools in environmental monitoring. An oxidative stress response found in many Gram-negative heterotrophic bacteria called the glutathione-gated potassium efflux (GGKE) mechanism is a good biological indicator to be used in a biosensor designed to detect the presence of oxidative chemicals in water. The authors of this study propose the development of a GGKE biosensor using an environmental strain of Pseudomonas aeruginosa. The abundance of the global antioxidant glutathione, the gating compound in GGKE, in various cell types suggests that there may be connections between the responses of the different cell types to oxidative stress. In this study, specific oxidative stress responses in two distantly related cell types were studied: the GGKE mechanism in Gram-negative heterotrophic bacteria, and mitochondrial dysfunction in rat brain cells. Furthermore, the use of an octanol-based emulsification method for the immobilization of P. aeruginosa in calcium alginate microbeads was evaluated for long-term mechanical stability, viability, and GGKE response of the immobilized cells. The immobilization of cells is an important factor in the design of a whole-cell biosensor, and must yield viable and active cells over time. This study showed that the dose-dependent responses of GGKE in Pseudomonas aeruginosa cells and of mitochondrial dysfunction in a mixed culture of rat brain cells to a model oxidative electrophilic chemical, N-ethylmaleimide, correspond well to each other. We also showed that both responses are accompanied by the depletion of intracellular glutathione, which precedes the GGKE response in P. aeruginosa as well as mitochondrial damage in rat brain cells. Thus, this study suggests that bacterial responses to oxidative stress involving glutathione, such as GGKE, could potentially be used as an early warning to predict the presence of bioavailable oxidative chemicals that can induce oxidative stress in eukaryotic systems. Although further research is needed, this suggests that bacterial stress response biosensors may be used to predict oxidative stress responses in mammalian brain cells. The octanol-based emulsification method produced P. aeruginosa encapsulated alginate microbeads with an average diameter of 200 μm. The microbeads were mechanically stable in solutions containing up to 20 mg/L K+ for 15 days. LIVE/DEAD® and specific oxygen uptake rate (SOUR) analyses showed that the microbead-immobilized cells recovered their membrane integrity within 5 days but not their net respiration potential. The microbead immobilized cells had no net GGKE potential in response to 50 mg/L N-ethylmaleimide after 14 days whereas water-based alginate bead (2mm) immobilized cells did, albeit at a reduced level to planktonic cells. Confirmation experiments revealed that octanol impeded cellular activities of the immobilized cells. Overall, this study showed that the octanol-based emulsification method is not suitable for the immobilization of P. aeruginosa for use in the GGKE biosensor and other microscale immobilization methods should be evaluated. / Master of Science
600

Effects of a dietary antioxidant blend on growth performance, liver function, oxidative stress, and meat and fat quality in pigs and broiler chickens fed diets high in oxidants

Lu, Ting 22 August 2013 (has links)
High feed ingredient prices have increased the use of by-products containing a high proportion of polyunsaturated fatty acids (PUFA) in pig and chicken feeds. This can increase the oxidation of other feed nutrients as well as causing oxidative stress in animals. Two studies were conducted to evaluate the effects of a dietary antioxidant blend (AOX, ethoxyquin and propyl gallate) in pigs and broiler chickens fed a diet high in oxidants. The objective of the first study was to evaluate the antioxidant blend on growth performance, meat quality, liver function, oxidative status, carcass characteristics, meat quality, and fatty acid profile in pigs. Crossbred barrows (n = 100, 10.91 ± 0.65 kg, 36 ± 2 d of age, Landrace × Duroc) were allotted to 5 treatments based on body weight (BW, 5 replicate pens per treatment, 4 pigs per pen). Treatments included: 1) HO: high oxidant diet containing 5% oxidized soy oil and 10% PUFA source (containing docosahexaenoic acid, DHA, 3.7% of diet); 2) VE: the HO diet with 11 IU/kg of added vitamin E; 3) AOX: the HO diet with AOX (135 mg/kg); 4) VE+AOX: the HO diet with both vitamin E and AOX; and 5) SC: a standard corn-soy control diet. The trial lasted for 118 d; on d 83, the HO diet pigs were switched to the SC diet because the animals were displaying very poor health. Compared with SC pigs, HO pigs had decreased average daily gain (ADG) and average daily feed intake (ADFI) from d 26 to 82 (P < 0.05). However, after switching the HO pigs to the SC diet, the VE treatment became the most stressed treatment with the poorest performance from d 83 to 118 (P < 0.05). The AOX restored pig performance to a level similar to pigs fed the SC diet (P > 0.05) with greater gain to feed ratio (G:F) for the entire period (P < 0.05). The AOX added treatments also attenuated the enlarged liver symptoms and reduced markers of liver stress including total bilirubin and aspartate transaminase, thiobarbituric acid reactive substances (TBARS) and carbonyl concentrations. In addition, the AOX addition in the high oxidant diet restored the lighter carcass weight, less back fat, less lean body mass and smaller loin eye area, decreased dressing percentage and intensive lipofuscin deposition induced by the high oxidant diet. However, the traits of loin muscle redness and belly firmness were not fully corrected by AOX. The second study was to investigate the antioxidant blend and vitamin E on growth performance, oxidative status, meat quality, fatty acid profile, liver function and inflammatory response in broiler chickens. Cobb 500 male broilers (n = 1200, 44.7 ± 0.8 g, d 0) were randomly distributed into 60 floor pens across 6 treatments with 10 replicate pens of 20 chicks each. Treatments included: 1) HO: high oxidant diet with vitamin E at 10 IU/kg, 3% oxidized oil, 3% PUFA source; 2) VE: the HO diet with vitamin E at 200 IU/kg; 3) AOX: the HO diet with AOX at 135 mg/kg, 4) VE+AOX: the HO diet with both vitamin E at 200 IU/kg and AOX at 135 mg/kg, 5) SC: standard control, a corn soy diet with vitamin E at 10 IU/kg, 3% non-oxidized soybean oil, no PUFA source, and 6) PC: positive control, the SC diet with AOX at 135 mg/kg. Compared to the SC birds, the PUFA added treatments (HO, VE, AOX, VE+AOX) groups had greater body weight, ADG and ADFI from d 0 through d 21 (P < 0.05). However, the growth of birds fed the VE treatment fell behind that of other treatments (P < 0.05) during the last 21 d of the trial. Compared to the HO birds, the AOX birds had lower TBARS and greater uric acid concentrations in the plasma, greater gene expression of superoxide dismutase and less drip loss, suggesting enhanced systematic antioxidant capability. In addition, dietary addition of AOX or AOX plus VE moderately improved liver function and reduced inflammation in fat tissue to a level similar to control groups. In both studies, the AOX supplement was effective in preserving PUFA, especially DHA deposition in the back fat of pigs and abdominal fat of chickens. These results suggest that feeding the high oxidant diet caused a series of changes in growth performance, liver function, oxidative status, carcass characteristics and meat quality in pigs, and AOX addition attenuated many of these. The supplementation of AOX also showed some effects on reducing oxidative stress in chickens. However, the effects were not as profound as the pig study. / Ph. D.

Page generated in 0.0715 seconds