Spelling suggestions: "subject:"cyclooxygenase""
51 |
Heme Oxygenase 1 expression after traumatic brain injury and effect of pharmacological manipulation on functional recovery.Russell, Nicholas H 01 January 2017 (has links)
Traumatic Brain Injury (TBI) is an increasingly diagnosed constellation of injuries derived from acute mechanical trauma to the brain. With the rise of advanced neuroimaging techniques recent focus has oriented primarily towards the mild-moderate range of TBI which previously was missed diagnostically. Characteristically, these advances have shown increasing areas of micro-hemorrhage in susceptible areas of the brain and to date there are no treatment modalities targeting micro-hemorrhages or their sequelae. This dissertation explores the effects of the resulting heme processing response in the days following injury with a particular focus on inducing early heme clearance from the parenchyma using a rat central fluid percussion injury model in the mild-moderate injury range. Since heme is released ~24-48 hours post-injury and is known to be cytotoxic we observed there may be a critical window for treatment to clear heme before it is spontaneously released and to increase the buffering capacity of the tissue. We targeted heme clearance by using drugs known to increased expression of Nrf2, an upstream transcriptional regulator of the canonical heme processing protein heme oxygenase 1 (HO-1), and tracking expression of HO-1, the iron sequestration/storage proteins Lipocalin 2 (LCN2) and Ferritin (FTL), as well as the activity of matrix metalloproteinases 2 and 9 (MMP2, MMP9). We examined both tissue known to be frankly hemorrhagic (the neocortex) as well as tissue lacking any identifiable bleed (the hippocampus). We demonstrated that using the HO-1 inducers Hemin and Sulforaphane in a single dose paradigm given 1 hour post-injury heme clearance was accelerated in the neocortex with the majority of heme pigment processed by 24 hours post-injury. Further there was significant attenuation of protein expression in HO-1 and ferritin as well as the enzyme activity of MMP2 and MMP9 in both the neocortex and the hippocampus. Behavioral attenuation was also seen in both rotarod and Morris water maze tests. While we intended to target hemorrhagic processing after injury, and indeed demonstrated improved clearance of heme from post-injury hemorrhagic regions of the brain, in both tissues studied we observed remarkably similar responses to the drugs utilized in protein expression, enzyme activity, and behavioral improvement which may suggest a globally improved pathologic state or that there are unidentified pathologic micro-hemorrhages or leaky vessels which extend further into the brain parenchyma than currently identified.
|
52 |
Molecular Mechanism of Heme Acquisition and Degradation by the Human Pathogen Group A StreptococcusOuattara, Mahamoudou 10 May 2013 (has links)
Heme is the major iron source for the deadly human pathogen, Group A Streptococcus (GAS). During infection, GAS lyses host cells releasing hemoglobin and other hemoproteins. This dissertation aims to elucidate the general mechanism by which GAS obtains and utilizes heme as an iron source from the host hemoproteins. GAS encodes a heme relay system consisting of Shr, Shp and the SiaABC transporter. We specifically determine the role of Shr in the heme uptake process, by conducting a detailed functional characterization of its constituent domains. We also undertake to solve the long-standing mystery surrounding the catabolism of heme in streptococci. The studies presented herein established Shr as a prototype of a new family of NEAT-containing hemoproteins receptors. They demonstrate its importance in heme acquisition by GAS and provide a molecular model for heme scavenging and transfer by the protein. We show that Shr modulates heme uptake depending on heme availability by a mechanism where NEAT1 facilitates fast heme scavenging and delivery to Shp, whereas NEAT2 serves as a temporary storage for heme on the bacterial surface. Finally, we identified and characterized for the first time, a heme oxygenase (HO) in the Streptococcus genus which was named HupZ. Sequence comparison between HupZ and several HOs from different structural families indicates that this enzyme is unrelated to any of the previously characterized HOs. However, orthologs of the protein are found in other important pathogens. The structure and the catalytic mechanism of HupZ suggest that it is the representative of a new family of flavoenzymes capable of degrading heme using their reduced flavin cofactor as a source of electrons. Overall, this work contributes significant knowledge to the topic of heme utilization by pathogens and importantly, provides new direct evidence that associates flavins with heme metabolism in bacteria. Thus it sets a new direction in the field and lays the ground for future fundamental and applied discoveries.
|
53 |
Structural determination and functional annotation of ChuS and ChuX, two members of the heme utilization operon in pathogenic Escherichia coli O157:H7Suits, Michael Douglas Leo, 1978- 05 July 2007 (has links)
For pathogenic microorganisms, heme uptake and degradation is a critical mechanism for iron acquisition that enables multiplication and survival within hosts they invade. While the bacterial proteins involved in heme transport had been identified at the initiation of our investigation, the fate of heme once it reached the cytoplasm was largely uncharacterized. Here we report the first crystal structures of two members of the heme utilization operon from the human pathogen Escherichia coli O157:H7. These are the heme oxygenase ChuS in its apo and heme-complexed forms, and the apo form of heme binding protein ChuX. Surprisingly, despite minimal sequence similarity between the N- and C-terminal halves, the structure of ChuS is a structural repeat. Furthermore, the ChuS monomer forms a topology that is similar to the homodimeric structure of ChuX. Based on spectral analysis and carbon monoxide measurement by gas chromatography, we demonstrated that ChuS is a heme oxygenase, the first to be identified in any E. coli strain. We also show that ChuS coordinates heme in a unique fashion relative to other heme oxygenases, potentially contributing to its enhanced activity. As ChuS and ChuX share structural homology, we extended the structural insight gained in our analysis of ChuS to purport a hypothesis of heme binding for ChuX. Furthermore, we demonstrated that ChuX may serve to modulate cytoplasmic stores of heme by binding heme and transferring it to other hemoproteins such as ChuS. Based on sequence and structural comparisons, we designed a number of site-directed mutations in ChuS and ChuX to probe heme binding sites and mechanisms in each. ChuS and ChuX mutants were analyzed through reconstitution experiments with heme and functional analyses, including enzyme catalysis by ChuS and mutants, and in culture development during heme challenge experiments by ChuX and mutants. Taken together, our results suggested that ChuX acts upstream of ChuS, and regulates heme uptake through ChuX-mediated heme binding and release. ChuS can degrade heme as a potential iron source or antioxidant, thereby contributing directly to E. coli O157:H7 pathogenesis. Functional implications that may be revealed from sequence and structure based information will be addressed as they pertained to our evaluation of ChuS and ChuX. / Thesis (Ph.D, Biochemistry) -- Queen's University, 2007-04-27 11:34:50.272
|
54 |
The effects of small molecule heme oxygenase inhibitors on rat cytochromes P450 2E1 and 3A1/2Hum, MAAIKE 18 November 2009 (has links)
Heme oxygenases (HO) catalyze the degradation of heme into biliverdin, carbon monoxide (CO) and free iron. The two major isoforms, HO-2 (constitutive) and HO-1 (inducible by various stressors such as heavy metals and reactive oxygen species) are involved in a variety of physiological functions, including anti-inflammation, antiapoptosis, neuromodulation, and vascular regulation. Major tools used in exploring these actions have been metalloporphyrin analogs of heme that inhibit the HOs. However, these tools are limited by their lack of selectivity; they affect other heme-dependent enzymes, such as cytochromes P450 (CYPs), soluble guanylyl cyclase (sGC), and nitric oxide synthase (NOS). Our laboratory has been able to successfully synthesize a series of small molecule non-porphyrin HO inhibitors (QC-xx) that have had little or no effect against sGC and NOS; however, their effects on various CYP isoforms has yet to be fully elucidated. In order to determine the effects on CYP enzyme activity, microsomal preparations of two CYP isoforms (2E1 and 3A1/3A2) were incubated with varying concentrations of HO inhibitor and the activity was determined via spectrophotometric analysis. Results indicated that some QC compounds demonstrated little to no inhibition of CYP2E1 and/or CYP3A1/2, while some others did inhibit these CYP isoforms. Four regions of interest were analyzed further and several structural changes were identified as conferring increased HO inhibition and decreased effect on both CYP2E1 and 3A1/2. Based on the information obtained, three putative compounds were designed and it is hypothesized that these compounds will be selective inhibitors for HO-1 over HO-2 and will display little effect on either CYP2E1 or 3A1/2 activities. / Thesis (Master, Pharmacology & Toxicology) -- Queen's University, 2008-11-20 11:19:48.841
|
55 |
PROTECTION AGAINST ENDOTHELIAL INFLAMMATION BY GREEN TEA FLAVONOIDSZheng, Yuanyuan 01 January 2010 (has links)
Endothelial inflammation is a pivotal early event in the development of atherosclerosis. Long term exposure to cardiovascular risk factors will ultimately exhaust those protective anti-inflammatory factors such as the heme oxygenase (HO) system. The HO system plays a critical role in cellular and tissue self-defense against oxidative stress and inflammation. Caveolae are membrane domains and are particularly abundant in endothelial cells, where they are believed to play a major role in the regulation of endothelial vesicular trafficking as well as the uptake of lipids and related lipophilic compounds, possibly including bioactive food components such as flavonoids. Research in this dissertation addresses the role of HO-1 and caveolae on dietary flavonoid epigallocatechin gallate (EGCG) mediated protection against pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and linoleic acid-induced activation of endothelial cells. The data support the hypothesis that EGCG protects against TNF-α-induced monocyte recruitment and adhesion partially through the induction of HO-1 and bilirubin. The observed anti-inflammatory effects of EGCG are mimicked by the HO-1 inducer cobalt protoporphyrin (CoPP) and abolished by HO-1 gene silencing. Nrf2 is the major transcription factor of phase II antioxidant enzymes including HO-1. Results clearly show that EGCG-induced HO-1 expression and subsequent bilirubin productions are dependent on functional Nrf2. EGCG also can down-regulate the base-line level of caveolin-1. Furthermore, silencing of the caveolin-1 gene can markedly down-regulate linoleic acid-induced COX-2 and MCP-1, indicating that caveolae may be a critical platform regulating inflammatory signaling pathways. Similar to EGCG treatment, silencing of caveolin-1 can also result in the activation of Nrf2, up-regulation of HO-1 and bilirubin. This may be one of the mechanisms to explain the protection effect of caveolin-1 gene silencing against endothelial inflammation. Moreover, EGCG rapidly accumulates in caveolae, which is associated with caveolin-1 displacement from the plasma membrane towards the cytosol. Caveolin-1 gene silencing can significantly reduce the uptake of EGCG in endothelial cells within 30 min. These data suggest that caveolae may play a role in the uptake and transport of EGCG in endothelial cells. These studies provide a novel target through which EGCG functions to protect against inflammatory diseases such as atherosclerosis.
|
56 |
ACTIVATION OF HEME OXYGENASE-2 TO IMPROVE OUTCOME AFTER TRAUMATIC BRAIN INJURYLEE, WALLACE 02 July 2014 (has links)
Traumatic brain injury (TBI) is an injury of the brain most often caused by blunt force trauma to the head and typically characterized by an increase in reactive oxygen species (ROS), inflammation, and hemorrhaging. Heme oxygenase (HO) catalyzes the breakdown of heme into carbon monoxide (CO), biliverdin which is further reduced to bilirubin, and ferrous iron. There are two active isoforms: HO-1 which is inducible and found predominantly in liver and spleen tissue; and HO-2 which is constitutive and found predominantly in the brain and testis. The metabolites of heme possess cytoprotective properties that can limit damage resulting from TBI. Our laboratory has found a selective HO-2 activator known as menadione (MD) that has been found to increase HO-2 activity by 4-fold while not affecting HO-1 in vitro. Given the higher amounts of HO-2 found in the brain and the cytoprotective properties of heme metabolites, we postulate that activation of HO-2 using menadione would mitigate further damage after TBI. The rat controlled cortical impact (CCI) model was used to simulate TBI with spontaneous locomotor activity (SLA), spontaneous alternation behaviour (SAB), and beam balance (BB) as the behavioural tasks to assess cognitive and motor function. A dose-response study (25, 50, 100, 200 μmol/kg) was performed to ascertain the effect of MD treatment on injured animals comparing to uninjured controls and injured animals treated with the vehicle (saline). We found that BB performance improved to control levels after MD treatment at 25 μmol/kg and 50 μmol/kg whereas animals treated with saline did not improve. SLA and SAB performance did not improve after treatment with MD. The findings suggest that HO-2 activation may be a viable method in mitigating further injury after TBI. / Thesis (Master, Pharmacology & Toxicology) -- Queen's University, 2014-06-27 19:33:45.645
|
57 |
The Role of Heme Oxygenase-1 and the CD163 Pathway in Type 1 Diabetes PathogenesisHusseini, Mahmoud 07 May 2013 (has links)
Type 1 diabetes (T1D) is an autoimmune disease whereby the insulin-producing β-cells of the pancreas are destroyed by the immune system, possibly related to an inappropriate immune reaction to dietary antigens and/or microbes in the gut. We previously observed a deficit in gut-resident CD163+ M2 anti-inflammatory macrophages in BioBreeding diabetes-prone (BBdp) rats. Heme oxygenase-1 (HO-1) is the rate-limiting enzyme of the CD163 pathway and through the breakdown of toxic heme releases potent antioxidants. We hypothesized that the treatment of animals with cobalt protoporphyrin (CoPP), an inducer of HO-1 expression, would inhibit development of T1D through modulation of the CD163/HO-1 pathway and increase M2 macrophages. HO-1 expression was significantly increased in the pancreas and gut. T1D incidence was inhibited in CoPP-treated rats and these animals showed an unexpected increase in cells expressing CD68 (an M1 pro-inflammatory macrophage marker) in the pancreas and gut. CoPP induced the expression of cathelicidin anti-microbial peptide (CAMP) in the jejunum, which co-localized with CD163+ (M2) macrophages. KLF4, an M2 macrophage-specific transcription factor, was significantly upregulated in the pancreas and jejunum of CoPP-treated animals and co-localized with CD68 and HO-1 in the pancreas. We conclude that HO-1 induction prevented T1D through modulation of the gut immune system and potential recruitment of a unique population of anti-inflammatory M2 macrophages in the gut and pancreas
|
58 |
The Role of Vascular Matrix Metalloproteinase-2 and Heme Oxygenase-2 in Mediating the Response to HypoxiaHe, Jeff ZiJian 24 September 2009 (has links)
Systemic hypoxia frequently occurs in patients with cardiopulmonary diseases. Maintenance of vascular reactivity and endothelial viability is essential to preserving oxygen delivery in these patients. The role of matrix metalloproteinase-2 (MMP-2) and heme oxygenase-2 (HO-2) in the vascular response to hypoxia were investigated. In the first part of the thesis, the role of MMP-2 in regulating systemic arterial contraction after prolonged hypoxia was investigated. MMP-2 inhibition with cyclic peptide CTTHWGFTLC (CTT) reduced phenylephrine (PE)-induced contraction in aortae and mesenteric arteries harvested from rats exposed to hypoxia for 7 d. Responses to PE were reduced in MMP-2-/- mice exposed to hypoxia for 7 d compared to wild-type controls. CTT reduced contraction induced by big endothelin-1 (big ET-1) in aortae harvested from rats exposed to hypoxia. Increased contraction to big ET-1 after hypoxia was observed in wild-type controls, but not MMP-2-/- mice. Rat aortic MMP-2 and MT1-MMP protein levels and MMP activity were increased after 7 d of hypoxia. Rat aortic MMP-2 and MT1-MMP mRNA levels were increased in the deep medial vascular smooth muscle. These results suggest that hypoxic induction of MMP-2 activity potentiates contraction in systemic conduit and resistance arteries through proteolytic activation of big ET-1.
The second part of the thesis investigated oxygen regulation of HO-2 protein and whether it plays a role in preserving endothelial cell viability during hypoxia. HO-2, but not HO-1, protein level was maintained during hypoxia in human endothelial cells through enhanced translation of HO-2 transcripts. Inhibition of HO-2 expression increased the production of reactive oxygen species, decreased mitochondrial membrane potential, and enhanced apoptotic cell death and activated caspases during hypoxia, but not during normoxia. These data indicate that HO-2 is translationally regulated and important in maintaining endothelial viability and function during hypoxia.
In summary, the thesis demonstrates the importance of MMP-2 and HO-2 in preserving vascular function during prolonged systemic hypoxia. These enzymatic pathways may, therefore, represent novel therapeutic targets that may be exploited to ameliorate the effects of hypoxia in patients with cardiopulmonary disease.
|
59 |
Heme oxygenase and the use of tin protoporphyrin in hypoxia-ischaemia-induced brain damage : mechanisms of actionSutherland, Brad Alexander, n/a January 2009 (has links)
Stroke is the third largest cause of death, and the leading cause of disability worldwide. Treatments are sought to reduce mortality, and increase survival time following an ischaemic stroke. Hypoxia-ischaemia (HI) is the combination of cerebral ischaemia and global hypoxia that can lead to neuronal damage, particularly perinatally. The complex neurodegenerative cascade following ischaemic stroke and HI activates many stress pathways, including heme oxygenase (HO). HO metabolises free heme to release iron, carbon monoxide, and biliverdin, which is subsequently metabolised to bilirubin. This thesis aims to elucidate the role HO plays following HI, and assess any neuroprotective mechanisms using HO modulators.
The 26 day old rat model of HI was used to induce the neurodegenerative cascade. All animals were sacrificed 3 days post-insult. Immunohistochemistry and Western blotting demonstrated that HO-1 was increased in the ipsilateral hemisphere of both HI (by 1.7 � 0.1 fold: p = 0.016, n = 4) and middle cerebral artery occlusion (MCAO) brains (by 1.6 � 0.1 fold: p = 0.037, n = 4), compared to controls. HO-2 was constitutively expressed throughout the control brain, but HI upregulated HO-2 expression (by 1.7 � 0.2 fold: p = 0.027, n = 4) ipsilaterally, whereas MCAO did not alter HO-2 expression. Administration of the HO inhibitor tin protoporphyrin (SnPP; 30[mu]mol/kg intraperitoneally) daily, beginning 1 day prior to HI until sacrifice, reduced infarct volume to 50% � 10 of saline-treated animals (p = 0.039, n = 6-8). The HO inducer ferriprotoporphyrin (FePP; 30[mu]mol/kg) had no effect on infarct volume. HO activity and protein expression were not significantly altered following treatment with SnPP. Therefore, the neuroprotective actions of SnPP may be through alternative mechanisms. SnPP treatment increased HI + saline-induced total nitric oxide synthase (NOS) activity by 1.5 � 0.06 fold (p < 0.001, n = 6-8). Conversely, SnPP inhibited both inducible NOS (50% � 7 of HI + saline; p = 0.045, n = 7-8) and cyclooxygenase (COX) activity (32% � 6 of HI + saline; p = 0.049, n = 4-8). SnPP treatment also increased mitochondrial complex I activity by 1.6 � 0.25 fold (p = 0.04, n = 4-8) and complex V activity by 1.7 � 0.26 fold (p = 0.046, n = 4-8) in the ipsilateral hemisphere. It appears that SnPP is acting on inflammatory and mitochondrial enzymes to produce neuroprotection. In vitro analysis of cultured RAW264.7 macrophages exposed to lipopolysaccharide (LPS; 10[mu]g/mL) treated with SnPP (dose range: 10⁻�⁰M - 10⁻⁵M) did not alter nitrite levels or cell viability. However, high dose SnPP (10⁻⁵M) in the absence of LPS increased nitrite levels from control cells by 2.7 � 0.7 fold (p = 0.043, n = 6), complementing the in vivo total NOS data. Other mechanisms such as NMDA receptor activation were not affected by 100[mu]M SnPP or 100[mu]M SnCl₂ in patch clamped cortical pyramidal neurons.
Overall, the role that HO plays following HI remains unclear, but this thesis provides definitive evidence that SnPP (an established HO inhibitor) provides neuroprotection. This neuroprotection may be due to its effects on inducible pathways such as NOS and COX. Therefore, further experimentation is required to fully elucidate the role that HO plays following cerebral ischaemia, and additional in vivo evidence will be necessary to establish HO inhibitors as a putative candidate for cerebral ischaemia neuroprotection.
|
60 |
Heme oxygenase and the use of tin protoporphyrin in hypoxia-ischaemia-induced brain damage : mechanisms of actionSutherland, Brad Alexander, n/a January 2009 (has links)
Stroke is the third largest cause of death, and the leading cause of disability worldwide. Treatments are sought to reduce mortality, and increase survival time following an ischaemic stroke. Hypoxia-ischaemia (HI) is the combination of cerebral ischaemia and global hypoxia that can lead to neuronal damage, particularly perinatally. The complex neurodegenerative cascade following ischaemic stroke and HI activates many stress pathways, including heme oxygenase (HO). HO metabolises free heme to release iron, carbon monoxide, and biliverdin, which is subsequently metabolised to bilirubin. This thesis aims to elucidate the role HO plays following HI, and assess any neuroprotective mechanisms using HO modulators.
The 26 day old rat model of HI was used to induce the neurodegenerative cascade. All animals were sacrificed 3 days post-insult. Immunohistochemistry and Western blotting demonstrated that HO-1 was increased in the ipsilateral hemisphere of both HI (by 1.7 � 0.1 fold: p = 0.016, n = 4) and middle cerebral artery occlusion (MCAO) brains (by 1.6 � 0.1 fold: p = 0.037, n = 4), compared to controls. HO-2 was constitutively expressed throughout the control brain, but HI upregulated HO-2 expression (by 1.7 � 0.2 fold: p = 0.027, n = 4) ipsilaterally, whereas MCAO did not alter HO-2 expression. Administration of the HO inhibitor tin protoporphyrin (SnPP; 30[mu]mol/kg intraperitoneally) daily, beginning 1 day prior to HI until sacrifice, reduced infarct volume to 50% � 10 of saline-treated animals (p = 0.039, n = 6-8). The HO inducer ferriprotoporphyrin (FePP; 30[mu]mol/kg) had no effect on infarct volume. HO activity and protein expression were not significantly altered following treatment with SnPP. Therefore, the neuroprotective actions of SnPP may be through alternative mechanisms. SnPP treatment increased HI + saline-induced total nitric oxide synthase (NOS) activity by 1.5 � 0.06 fold (p < 0.001, n = 6-8). Conversely, SnPP inhibited both inducible NOS (50% � 7 of HI + saline; p = 0.045, n = 7-8) and cyclooxygenase (COX) activity (32% � 6 of HI + saline; p = 0.049, n = 4-8). SnPP treatment also increased mitochondrial complex I activity by 1.6 � 0.25 fold (p = 0.04, n = 4-8) and complex V activity by 1.7 � 0.26 fold (p = 0.046, n = 4-8) in the ipsilateral hemisphere. It appears that SnPP is acting on inflammatory and mitochondrial enzymes to produce neuroprotection. In vitro analysis of cultured RAW264.7 macrophages exposed to lipopolysaccharide (LPS; 10[mu]g/mL) treated with SnPP (dose range: 10⁻�⁰M - 10⁻⁵M) did not alter nitrite levels or cell viability. However, high dose SnPP (10⁻⁵M) in the absence of LPS increased nitrite levels from control cells by 2.7 � 0.7 fold (p = 0.043, n = 6), complementing the in vivo total NOS data. Other mechanisms such as NMDA receptor activation were not affected by 100[mu]M SnPP or 100[mu]M SnCl₂ in patch clamped cortical pyramidal neurons.
Overall, the role that HO plays following HI remains unclear, but this thesis provides definitive evidence that SnPP (an established HO inhibitor) provides neuroprotection. This neuroprotection may be due to its effects on inducible pathways such as NOS and COX. Therefore, further experimentation is required to fully elucidate the role that HO plays following cerebral ischaemia, and additional in vivo evidence will be necessary to establish HO inhibitors as a putative candidate for cerebral ischaemia neuroprotection.
|
Page generated in 0.0619 seconds