Spelling suggestions: "subject:"pósprocessamento"" "subject:"pósprocessamento""
1 |
Pós-processamento de regras de associação via redes e propagação de rótulos / Post-processing association rules using networks and label propagationPadua, Renan de 27 February 2015 (has links)
Dentre as técnicas de mineração existentes encontra-se a associação, responsável por identificar relações que ocorrem no conjunto de dados. Embora a associação seja uma das técnicas mais utilizadas, a quantidade de padrões extraídos pode vir a sobrecarregar o usuário de tal maneira que encontrar algo interessante dentre a imensidão de padrões obtidos passa a ser um novo desafio. Para solucionar esse problema, uma grande parte dos trabalhos relacionados à associação está voltada a etapa de pós-processamento. Esses trabalhos geralmente propõem abordagens de pós-processamento que visam, segundo determinada estratégia, facilitar a busca pelos padrões interessantes ao domínio. Nos últimos anos, essas abordagens têm incluído no processo o conhecimento e/ou interesse do usuário sobre o domínio. Contudo, nas abordagens atualmente existentes, o usuário deve, por meio de algum formalismo descrever explicitamente seu conhecimento e/ou interesse, requerendo do usuário um tempo considerável, podendo levar, inclusive, a especificações incompletas e/ou incorretas. Além disso, na maioria das vezes, o usuário não tem ideia do que é provavelmente interessante, nem a partir de quais relações iniciar a busca. Nota-se, portanto, que um dos desafios dessas abordagens é considerar o conhecimento e/ou interesse do usuário. Além disso, é necessário considerar também o número de regras que o usuário analisará. A análise de regras feita por um especialista é custosa e, na maioria dos casos, o usuário quer explorar as regras geradas sem limitar a exploração ao conhecimento que ele já possui. Portanto, é importante que o usuário avalie o menor número de regras possível e, com base nessa avaliação, abordagens de pós-processamento consigam o auxiliar na busca pelas regras que ele poderá considerar interessante. Para tanto, é proposto neste trabalho que o pós-processamento seja tratado como um problema de classificação semissupervisionada transdutiva, uma vez que permite que o usuário rotule, considerando classes pré-definidas (por exemplo, \"Interessante\" ou \"Não Interessante\"), apenas algumas regras do conjunto a ser explorado para que todas as outras regras sejam automaticamente rotuladas. Além disso, por meio da definição dos rótulos de algumas regras, é possível capturar implicitamente o conhecimento e/ou interesse do usuário sobre o domínio. Para tanto, é necessário que as regras sejam modeladas de maneira a permitir: (a) selecionar as regras a serem rotuladas pelo usuário a fim de capturar implicitamente seu conhecimento e/ou interesse; (b) propagar os rótulos das regras já classificadas pelo usuário a todas as outras regras não rotuladas. Desse modo, neste trabalho, as regras foram modeladas via redes, uma vez que: (i) uma vasta quantidade de medidas de exploração de redes pode ser utilizada, em conjunto com as informações fornecidas pelo usuário, a fim de viabilizar o item (a); (ii) algoritmos de propagação de rótulos podem ser utilizados a fim de viabilizar o item (b). Diante do apresentado, ressalta-se que as contribuições deste trabalho estão na capacidade de se extrair o conhecimento e/ou interesse do usuário de acordo com as características da base de dados e direcionar sua exploração sem a necessidade de se definir previamente o que será explorado. Além disso, os resultados obtidos demonstram a capacidade da PARLP em direcionar o usuário para o conhecimento considerado interessante, reduzindo, para tanto, a quantidade de regras a serem exploradas. Por fim, este trabalho contribui também para demonstrar que é possível tratar o pós-processamento de regras de associação como um problema de propagação de rótulos. / One of the existing data mining techniques is association rules, responsible for identifying relationships that occur in the data set. Although the association rule is one of the most widely used techniques, the amount of extracted patterns can overload the user in such a way that finding interesting patterns among the large amount of obtained patterns becomes a challenge. To solve this problem, a large part of the association-related work is focused on the post-processing step. These works generally propose a post-processing approaches that, according to a certain strategy, aims facilitating the search for interesting patterns. Nowadays, approaches have included the user knowledge in the domain and / or interests on the process. However, in the current existing approaches, the user knowledge and/or interest must be explicitly described by some formalism, requiring a considerable time and may even lead to incomplete and / or incorrect specifications. In addition, the user has no idea what probably is interesting or which patterns to begin the searching. Notice that one of the challenges of these approaches is to consider the knowledge and / or user interest. In addition, consider the number of rules the user will examine is necessary. The analysis of the rules by an expert is expensive and, in most cases, the user wants to explore the rules generated without limiting exploration to the knowledge he already has. Therefore, the user evaluate the fewest amount of rules possible is important and, based on this assessment, the post-processing approaches be able to assist in the search for the rules that he may consider interesting. So, in this work is proposed that the post-processing is treated as a transductive semi supervised classification problem, since it allows the user to label some rules based on two predefined classes (e.g. \"interesting\"or \"not interesting\"), in a way that just a small amount of the rule set needs to be explored and all other association rules are automatically labeled. Furthermore, you can implicitly capture the knowledge and / or user interest in the domain by labeling some rules. Thus, the rules need to be modeled to allow: (a) select the rules to be labeled by the user to implicitly capture their knowledge and / or interest; (b) propagate the rules\' labels classified by the user to all not labeled rules. To do so, the rules were modeled via networks in this work, due to: (i) a large amount of network measures can be used in conjunction with the information provided by the user, to make item (a) possible; (ii) label propagation algorithms can be used in order to make item (b) possible. Therefore, we highlight that the contributions of this work are the ability to extract knowledge and / or user interest according to database characteristics and direct the user exploration without previously defining what will be explored. In addition, the results demonstrate that the proposed approach is able to direct the user to the knowledge considered interesting, reducing the amount of rules to be explored. Finally, this work also contributes to demonstrate that treat the post-processing of association rules as a problem of propagation of labels is possible.
|
2 |
"Pós-processamento de regras de associação" / Post-processing of association rulesMelanda, Edson Augusto 30 November 2004 (has links)
A demanda por métodos de análise e descoberta de conhecimento em grandes bases de dados tem fortalecido a pesquisa em Mineração de Dados. Dentre as tarefas associadas a essa área, tem-se Regras de Associação. Vários algoritmos foram propostos para tratamento de Regras de Associação, que geralmente tem como resultado um elevado número de regras, tornando o Pós-processamento do conhecimento uma etapa bastante complexa e desafiadora. Existem medidas para auxiliar essa etapa de avaliação de regras, porém existem lacunas referentes a inexistência de um método intuitivo para priorizar e selecionar regras. Além disso, não é possível encontrar metodologias específicas para seleção de regras considerando mais de uma medida simultaneamente. Esta tese tem como objetivo a proposição, desenvolvimento e implementação de uma metodologia para o Pós-processamento de Regras de Associação. Na metodologia proposta, pequenos grupos de regras identificados como potencialmente interessantes são apresentados ao usuário especialista para avaliação. Para tanto, foram analisados métodos e técnicas utilizadas em Pós-processamento de conhecimento, medidas objetivas para avaliação de Regras de Associação e algoritmos que geram regras. Dessa perspectiva foram realizados experimentos para identificar o potencial das medidas a serem empregadas como filtros de Regras de Associação. Uma avaliação gráfica apoiou o estudo das medidas e a especificação da metodologia proposta. Aspecto inovador da metodologia proposta é a utilização do método de Pareto e a combinação de medidas para selecionar as Regras de Associação. Por fim foi implementado um ambiente para avaliação de Regras de Associação, denominado ARInE, viabilizando o uso da metodologia proposta. / The large demand of methods for knowledge discovery and analysis in large databases has continously increased the research in data mining area. Among the tasks associated to this area, one can find Association Rules. Several algorithms have been proposed for treating Association Rules. However, these algorithms give as results a huge amount of rules, making the knowledge post-processing phase very complex and challeging. There are several measures that can be used in this evaluation phase, but there are also some limitations regarding to the ausence of an intuitive method to rank and select rules. Moreover, it is not possible to find especific methodologies for selecting rules, considering more than one measure simultaneously. This thesis has as objective the proposal, development and implementation of a postprocessing methodology for Association Rules. In the proposed methodology, small groups of rules, which have been identified as potentialy interesting, are presented to the expert for evaluation. In this sense, methods and techniques for knowledge post-processing, objective measures for rules evaluation, and Association Rules algorithms have been analized. From this point of view, several experiments have been realized for identifying the potential of such measures to be used to filter Association Rules. The study of measures and the specification of the proposed methodology have been supported by a graphical evaluation. The novel aspect of the proposed methodology consists on using the Paretos method and combining measures for selecting Association Rules. Finally, an enviroment for evaluating Association Rules, named as ARInE, has been implemented according to the proposed methodology.
|
3 |
"Generalização de regras de associação" / Generalization of association rulesDomingues, Marcos Aurélio 27 April 2004 (has links)
Mineração de Dados é um processo de natureza iterativa e interativa responsável por identificar padrões em grandes conjuntos de dados, objetivando extrair conhecimento válido, útil e inovador a partir desses. Em Mineração de Dados, Regras de Associação é uma técnica que consiste na identificação de padrões intrínsecos ao conjunto de dados. Essa técnica tem despertado grande interesse nos pesquisadores de Mineração de Dados e nas organizações, entretanto, a mesma possui o inconveniente de gerar grande volume de conhecimento no formato de regras, dificultando a análise e interpretação dos resultados pelo usuário. Nesse contexto, este trabalho tem como objetivo principal generalizar e eliminar Regras de Associação não interessantes e/ou redundantes, facilitando, dessa maneira, a análise das regras obtidas com relação à compreensibilidade e tamanho do conjunto de regras. A generalização das Regras de Associação é realizada com o uso de taxonomias. Entre os principais resultados deste trabalho destacam-se a proposta e a implementação do algoritmo GART e do módulo computacional RulEE-GAR. O algoritmo GART (Generalization of Association Rules using Taxonomies - Generalização de Regras de Associação usando Taxonomias) utiliza taxonomias para generalizar Regras de Associação. Já o módulo RulEE-GAR, além de facilitar o uso do algoritmo GART durante a identificação de taxonomias e generalização de regras, provê funcionalidades para analisar as Regras de Associação generalizadas. Os experimentos realizados, neste trabalho, mostraram que o uso de taxonomias na generalização de Regras de Associação pode reduzir o volume de um conjunto de regras. / Data Mining refers to the process of finding patterns in large data sets. The Association Rules in Data Mining try to identify intrinsic behaviors of the data set. This has motivated researchers of Data Mining and organizations. However, the Association Rules have the inconvenient of generating a great amount of knowledge in the form of rules. This makes the analysis and interpretation of the results difficult for the user. Taking this into account, the main objective of this research is the generalization and elimination of non-interesting and/or redundant Association Rules. This facilite the analysis of the rules with respect to the compreensibility and the size of the rule set. The generalization is realized using taxonomies. The main results of this research are the proposal and the implementation of the algorithm GART and of the computational module RulEE-GAR. The algorithm GART (Generalization of Association Rules using Taxonomies) uses taxonomies to generalize Association Rules. The module RulEE-GAR facilitates the use of the algorithm GART in the identification of taxonomies and generalization of rules and provide functionalities to the analysis of the generalized Association Rules. The results of experiments showed that the employment of taxonomies in the generalization of Association Rules can reduce the size of a rule set.
|
4 |
Construção semi-automática de taxonomias para generalização de regras de associação / Semi-automatic construction of taxonomies for association rules generationMartins, Camila Delefrate 14 July 2006 (has links)
Para o sucesso do processo de mineração de dados é importante que o conhecimento extraí?do seja compreensível e interessante para que o usuário final possa utilizá-lo em um sistema inteligente ou em processos de tomada de decisão. Um grande problema, porém, é identificado quando a tarefa de mineração de dados denominada associação é utilizada: a geração de um grande volume de regras. Taxonomias podem ser utilizadas para facilitar a análise e interpretação das regras de associação, uma vez que as mesmas provêm uma visão de como os itens podem ser hierarquicamente classificados. Em função dessa hierarquia é possível obter regras mais gerais que representem um conjunto de itens. Dentro desse contexto, neste trabalho é apresentada uma metodologia para construção semi-automática de taxonomias, que inclui procedimentos automáticos e interativos para a realização dessa tarefa. Essa combinação possibilita a utilização do conhecimento do especialista e também o auxilia na identificação de grupos. Entre os principais resultados deste trabalho, pode-se destacar a proposta e implementação do algoritmo SACT (Semi-automatic Construction of Taxonomies - Construção Semi-automática de Taxonomias), que provê a utilização da metodologia proposta. Para viabilizar a utilização do algoritmo, foi desenvolvido o módulo computacional RulEESACT. Com o objetivo de viabilizar e analisar a qualidade da metodologia proposta e do módulo desenvolvido, foi realizado um estudo de caso no qual foram construída taxonomias para duas bases de dados utilizando o RulEE-SACT. Uma das taxonomias foi analisada e validada por uma especialista do domínio. Posteriormente, as taxonomias e as bases de transações foram fornecidas para dois algoritmos de generalização de regras de associação a fim de analisar a aplicação das taxonomias geradas / I n the data mining process it is important that the extracted knowledge is understandable and interesting to the final user, so it can be used to support in the decision making. However, the data mining task named association has one problem: it generates a big volume of rules. Taxonomies can be used to facilitate the analysis and interpretation of association rules, because they provide an hierarchical vision of the items. This hierarchy enables the obtainment of more general rules, which represent a set of items. In this context, a methodology to semi-automatically construct taxonomies is proposed in this work. This methodology includes automatic and interactives procedures in order to construct the taxonomies, using the specialist?s knowledge and also assisting in the identification of groups. One of the main results of this work is the proposal and implementation of the SACT (Semi-automatic Construction of Taxonomies) algorithm, which provides the use of the proposed methodology. In order to facilitate the use of this algorithm, a computational module named RulEE-SACT was developed. Aiming to analyze the viability and quality of the proposed methodology and the developed module, a case study was done. In this case study, taxonomies of two databases were constructed using the RulEE-SACT. One of them was analyzed and validated by a domain specialist. Then the taxonomies and the databases were supplied to two algorithms which generalize association rules, aiming to analyze the use of the generated taxonomies
|
5 |
"Generalização de regras de associação" / Generalization of association rulesMarcos Aurélio Domingues 27 April 2004 (has links)
Mineração de Dados é um processo de natureza iterativa e interativa responsável por identificar padrões em grandes conjuntos de dados, objetivando extrair conhecimento válido, útil e inovador a partir desses. Em Mineração de Dados, Regras de Associação é uma técnica que consiste na identificação de padrões intrínsecos ao conjunto de dados. Essa técnica tem despertado grande interesse nos pesquisadores de Mineração de Dados e nas organizações, entretanto, a mesma possui o inconveniente de gerar grande volume de conhecimento no formato de regras, dificultando a análise e interpretação dos resultados pelo usuário. Nesse contexto, este trabalho tem como objetivo principal generalizar e eliminar Regras de Associação não interessantes e/ou redundantes, facilitando, dessa maneira, a análise das regras obtidas com relação à compreensibilidade e tamanho do conjunto de regras. A generalização das Regras de Associação é realizada com o uso de taxonomias. Entre os principais resultados deste trabalho destacam-se a proposta e a implementação do algoritmo GART e do módulo computacional RulEE-GAR. O algoritmo GART (Generalization of Association Rules using Taxonomies - Generalização de Regras de Associação usando Taxonomias) utiliza taxonomias para generalizar Regras de Associação. Já o módulo RulEE-GAR, além de facilitar o uso do algoritmo GART durante a identificação de taxonomias e generalização de regras, provê funcionalidades para analisar as Regras de Associação generalizadas. Os experimentos realizados, neste trabalho, mostraram que o uso de taxonomias na generalização de Regras de Associação pode reduzir o volume de um conjunto de regras. / Data Mining refers to the process of finding patterns in large data sets. The Association Rules in Data Mining try to identify intrinsic behaviors of the data set. This has motivated researchers of Data Mining and organizations. However, the Association Rules have the inconvenient of generating a great amount of knowledge in the form of rules. This makes the analysis and interpretation of the results difficult for the user. Taking this into account, the main objective of this research is the generalization and elimination of non-interesting and/or redundant Association Rules. This facilite the analysis of the rules with respect to the compreensibility and the size of the rule set. The generalization is realized using taxonomies. The main results of this research are the proposal and the implementation of the algorithm GART and of the computational module RulEE-GAR. The algorithm GART (Generalization of Association Rules using Taxonomies) uses taxonomies to generalize Association Rules. The module RulEE-GAR facilitates the use of the algorithm GART in the identification of taxonomies and generalization of rules and provide functionalities to the analysis of the generalized Association Rules. The results of experiments showed that the employment of taxonomies in the generalization of Association Rules can reduce the size of a rule set.
|
6 |
Generalização de regras de associação utilizando conhecimento de domínio e avaliação do conhecimento generalizado / Generalization of association rules through domain knowledge and generalized knoeledge evaliationCarvalho, Veronica Oliveira de 23 August 2007 (has links)
Dentre as técnicas de mineração de dados encontra-se a associação, a qual identifica todas as associações intrínsecas contidas na base de dados. Entretanto, essa característica, vantajosa por um lado, faz com que um grande número de padrões seja gerado, sendo que muito deles, mesmo sendo estatisticamente aceitos, são triviais, falsos, ou irrelevantes à aplicação. Além disso, a técnica de associação tradicional gera padrões compostos apenas por itens contidos na base de dados, o que leva à extração, em geral, de um conhecimento muito específico. Essa especificidade dificulta a obtenção de uma visão geral do domínio pelos usuários finais, que visam a utilização/exploração de conhecimentos úteis e compreensíveis. Assim, o pós-processamento das regras descobertas se torna um importante tópico, uma vez que há a necessidade de se validar as regras obtidas. Diante do exposto, este trabalho apresenta uma abordagem de pós-processamento de regras de associação que utiliza conhecimento de domínio, expresso via taxonomias, para obter um conjunto de regras de associação generalizadas compacto e representativo. Além disso, a fim de avaliar a representatividade de padrões generalizados, é apresentado também neste trabalho um estudo referente à utilização de medidas de interesse objetivas quando aplicadas a regras de associação generalizadas. Nesse estudo, a semântica da generalização é levada em consideração, já que cada uma delas fornece uma visão distinta do domínio. Como resultados desta tese, foi possível observar que: um conjunto de regras de associação pode ser compactado na presença de um conjunto de taxonomias; para cada uma das semânticas de generalização existe um conjunto de medidas mais apropriado para ser utilizado na avaliação de regras generalizadas / The association technique, one of the data mining techniques, identifies all the intrinsic associations in database. This characteristic, which can be advantageous on the one hand, generates a large number of patterns. Many of these patterns, even statistically accepted, are trivial, spurious, or irrelevant to the application. In addition, the association technique generates patterns composed only by items in database, which in general implies a very specific knowledge. This specificity makes it difficult to obtain a general view of the domain by the final users, who aims the utilization/exploration of useful and comprehensible knowledge . Thus, the post-processing of the discovered rules becomes an important topic, since it is necessary to validate the obtained rules. In this context, this work presents an approach for post-processing association rules that uses domain knowledge, expressed by taxonomies, to obtain a reduced and representative generalized association rule set. In addition, in order to evaluate the representativeness of generalized patterns, a study referent to the use of objective interest measures when applied to generalized association rules is presented. In this study, the generalization semantics is considered, since each semantic provides a distinct view of the domain. As results of this thesis, it was possible to observe that: an association rule set can be compacted with a taxonomy set; for each generalization semantic there is a measure set that is more appropriate to be used in the generalized rules evaluation
|
7 |
Influência do tipo e da técnica de aplicação de agente infiltrante na resistência mecânica de componentes produzidos por manufatura aditiva (3DP) /Mello, Silvia Teixeira de. January 2017 (has links)
Orientador: Ruis Camargo Tokimatsu / Resumo: Ao longo das duas últimas décadas, a contribuição da manufatura aditiva passou da confecção de um mero protótipo de um produto, no início de seu desenvolvimento, para a confecção de qualquer produto direto, presente em todos os setores industriais. Com este avanço, diferentes tecnologias da manufatura aditiva surgiram com o intuito de melhorar alguns parâmetros de produção. Neste meio, a tecnologia de impressão tridimensional 3DP, por consequência de suas várias características intrínsecas, se destaca para atender o setor biomédico, através da técnica de biomodelagem, que contribuem imensamente de forma didática e prática para a performance de cirurgias. Porém, há algumas limitações finais nas peças obtidas por esta tecnologia que devem ser contornadas, focando-se no tratamento adicional necessário destas peças, o pós-processamento, de modo a aprimorá-las, conferindo então sucesso ao destino destas. Neste trabalho, adotou-se a tecnologia de manufatura aditiva 3DP para estudar como a adição de diferentes agentes infiltrantes influenciam no acréscimo de densidade aparente e resistência mecânica de amostras feitas de componentes de gesso, constituídas por corpos de prova cilíndricos e prismáticos, de modo a simular a melhor composição para biomodelos. Para isto, o pós-processamento foi dividido em duas etapas. Na primeira etapa, foram aplicados separadamente nas amostras, quatro tipos de adesivos à base de etilcianocrilato, por gotejamento, e um à base de epóxi, por moldagem com... (Resumo completo, clicar acesso eletrônico abaixo) / Mestre
|
8 |
Influência do tipo e da técnica de aplicação de agente infiltrante na resistência mecânica de componentes produzidos por manufatura aditiva (3DP) / Influence of the type and the technique of application of infiltrating agent on the mechanical strength of components produced by additive manufacture (3DP)Mello, Silvia Teixeira de [UNESP] 30 August 2017 (has links)
Submitted by Silvia Teixeira de Mello null (silviateixmello@gmail.com) on 2017-10-26T21:23:12Z
No. of bitstreams: 1
DISSERTAÇÃO SILVIA MELLO 2017-3 CORRIGIDA 26-10.pdf: 3630355 bytes, checksum: 302fa9b705ffc11d7192a4b67392d0c6 (MD5) / Approved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-10-31T18:59:52Z (GMT) No. of bitstreams: 1
mello_st_me_ilha.pdf: 3630355 bytes, checksum: 302fa9b705ffc11d7192a4b67392d0c6 (MD5) / Made available in DSpace on 2017-10-31T18:59:52Z (GMT). No. of bitstreams: 1
mello_st_me_ilha.pdf: 3630355 bytes, checksum: 302fa9b705ffc11d7192a4b67392d0c6 (MD5)
Previous issue date: 2017-08-30 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Ao longo das duas últimas décadas, a contribuição da manufatura aditiva passou da confecção de um mero protótipo de um produto, no início de seu desenvolvimento, para a confecção de qualquer produto direto, presente em todos os setores industriais. Com este avanço, diferentes tecnologias da manufatura aditiva surgiram com o intuito de melhorar alguns parâmetros de produção. Neste meio, a tecnologia de impressão tridimensional 3DP, por consequência de suas várias características intrínsecas, se destaca para atender o setor biomédico, através da técnica de biomodelagem, que contribuem imensamente de forma didática e prática para a performance de cirurgias. Porém, há algumas limitações finais nas peças obtidas por esta tecnologia que devem ser contornadas, focando-se no tratamento adicional necessário destas peças, o pós-processamento, de modo a aprimorá-las, conferindo então sucesso ao destino destas. Neste trabalho, adotou-se a tecnologia de manufatura aditiva 3DP para estudar como a adição de diferentes agentes infiltrantes influenciam no acréscimo de densidade aparente e resistência mecânica de amostras feitas de componentes de gesso, constituídas por corpos de prova cilíndricos e prismáticos, de modo a simular a melhor composição para biomodelos. Para isto, o pós-processamento foi dividido em duas etapas. Na primeira etapa, foram aplicados separadamente nas amostras, quatro tipos de adesivos à base de etilcianocrilato, por gotejamento, e um à base de epóxi, por moldagem com pá. Já na segunda etapa, foram aplicados nas amostras, também separadamente, quatro tipos de adesivos à base de etilcianocrilato, por gotejamento e banho de imersão, e um à base de epóxi, por moldagem com pá. Além dos métodos de aplicação dos adesivos, as duas etapas se diferem também pelos binders utilizados para constituírem as amostras à base de gesso. Para ambas etapas, obteve-se o melhor resultado com o adesivo de cianocrilato de baixíssima viscosidade, capaz de provocar maiores variações de densidade aparente às amostras, além de maiores acréscimos de resistência. / Over the past two decades, the contribution of additive manufacturing has shifted from a mere prototype of a product at the beginning of its development to the production of any direct product present in all industrial sectors. With this advance, different technologies of the additive manufacturing appeared with the intention to improve some parameters of production. In this environment, three-dimensional printing 3DP technology, due to its various intrinsic characteristics, stands out to serve the biomedical sector through the biomodelling technique, which contribute immensely in a didactic and practical way for the performance of surgeries. However, there are some final limitations in the parts obtained by this technology that must be improved, focusing on the necessary additional treatment of these parts, the post-processing, in order to upgrade them, thus giving success to their destination. In this study, 3DP additive manufacturing technology was adopted to study how different infiltrating agents influence the increase in apparent density and mechanical strength of samples made of gypsum components, constituted by cylindrical and prismatic specimens, in order to simulate the best composition for biomodels. For this, the post-processing was divided in two stages. In the first stage, separately, four types of ethylcyanoacrylate-based adhesives were applied on the samples by dripping, and one epoxy-based adhesive was applied by shovel molding. In the second stage, also separately, four types of ethylcyanocrylate based adhesives were applied in the samples, by dripping and by dipping, and the epoxy-based, by shovel molding. Besides the adhesive application methods, the two stages also differ from the binders used to constitute the gypsum-based samples. For both stages, the best result was obtained by the cyanoacrylate adhesive with very low viscosity, capable of causing greater variations of apparent density and additions of strength to the samples.
|
9 |
Pós-processamento de regras de associação via redes e propagação de rótulos / Post-processing association rules using networks and label propagationRenan de Padua 27 February 2015 (has links)
Dentre as técnicas de mineração existentes encontra-se a associação, responsável por identificar relações que ocorrem no conjunto de dados. Embora a associação seja uma das técnicas mais utilizadas, a quantidade de padrões extraídos pode vir a sobrecarregar o usuário de tal maneira que encontrar algo interessante dentre a imensidão de padrões obtidos passa a ser um novo desafio. Para solucionar esse problema, uma grande parte dos trabalhos relacionados à associação está voltada a etapa de pós-processamento. Esses trabalhos geralmente propõem abordagens de pós-processamento que visam, segundo determinada estratégia, facilitar a busca pelos padrões interessantes ao domínio. Nos últimos anos, essas abordagens têm incluído no processo o conhecimento e/ou interesse do usuário sobre o domínio. Contudo, nas abordagens atualmente existentes, o usuário deve, por meio de algum formalismo descrever explicitamente seu conhecimento e/ou interesse, requerendo do usuário um tempo considerável, podendo levar, inclusive, a especificações incompletas e/ou incorretas. Além disso, na maioria das vezes, o usuário não tem ideia do que é provavelmente interessante, nem a partir de quais relações iniciar a busca. Nota-se, portanto, que um dos desafios dessas abordagens é considerar o conhecimento e/ou interesse do usuário. Além disso, é necessário considerar também o número de regras que o usuário analisará. A análise de regras feita por um especialista é custosa e, na maioria dos casos, o usuário quer explorar as regras geradas sem limitar a exploração ao conhecimento que ele já possui. Portanto, é importante que o usuário avalie o menor número de regras possível e, com base nessa avaliação, abordagens de pós-processamento consigam o auxiliar na busca pelas regras que ele poderá considerar interessante. Para tanto, é proposto neste trabalho que o pós-processamento seja tratado como um problema de classificação semissupervisionada transdutiva, uma vez que permite que o usuário rotule, considerando classes pré-definidas (por exemplo, \"Interessante\" ou \"Não Interessante\"), apenas algumas regras do conjunto a ser explorado para que todas as outras regras sejam automaticamente rotuladas. Além disso, por meio da definição dos rótulos de algumas regras, é possível capturar implicitamente o conhecimento e/ou interesse do usuário sobre o domínio. Para tanto, é necessário que as regras sejam modeladas de maneira a permitir: (a) selecionar as regras a serem rotuladas pelo usuário a fim de capturar implicitamente seu conhecimento e/ou interesse; (b) propagar os rótulos das regras já classificadas pelo usuário a todas as outras regras não rotuladas. Desse modo, neste trabalho, as regras foram modeladas via redes, uma vez que: (i) uma vasta quantidade de medidas de exploração de redes pode ser utilizada, em conjunto com as informações fornecidas pelo usuário, a fim de viabilizar o item (a); (ii) algoritmos de propagação de rótulos podem ser utilizados a fim de viabilizar o item (b). Diante do apresentado, ressalta-se que as contribuições deste trabalho estão na capacidade de se extrair o conhecimento e/ou interesse do usuário de acordo com as características da base de dados e direcionar sua exploração sem a necessidade de se definir previamente o que será explorado. Além disso, os resultados obtidos demonstram a capacidade da PARLP em direcionar o usuário para o conhecimento considerado interessante, reduzindo, para tanto, a quantidade de regras a serem exploradas. Por fim, este trabalho contribui também para demonstrar que é possível tratar o pós-processamento de regras de associação como um problema de propagação de rótulos. / One of the existing data mining techniques is association rules, responsible for identifying relationships that occur in the data set. Although the association rule is one of the most widely used techniques, the amount of extracted patterns can overload the user in such a way that finding interesting patterns among the large amount of obtained patterns becomes a challenge. To solve this problem, a large part of the association-related work is focused on the post-processing step. These works generally propose a post-processing approaches that, according to a certain strategy, aims facilitating the search for interesting patterns. Nowadays, approaches have included the user knowledge in the domain and / or interests on the process. However, in the current existing approaches, the user knowledge and/or interest must be explicitly described by some formalism, requiring a considerable time and may even lead to incomplete and / or incorrect specifications. In addition, the user has no idea what probably is interesting or which patterns to begin the searching. Notice that one of the challenges of these approaches is to consider the knowledge and / or user interest. In addition, consider the number of rules the user will examine is necessary. The analysis of the rules by an expert is expensive and, in most cases, the user wants to explore the rules generated without limiting exploration to the knowledge he already has. Therefore, the user evaluate the fewest amount of rules possible is important and, based on this assessment, the post-processing approaches be able to assist in the search for the rules that he may consider interesting. So, in this work is proposed that the post-processing is treated as a transductive semi supervised classification problem, since it allows the user to label some rules based on two predefined classes (e.g. \"interesting\"or \"not interesting\"), in a way that just a small amount of the rule set needs to be explored and all other association rules are automatically labeled. Furthermore, you can implicitly capture the knowledge and / or user interest in the domain by labeling some rules. Thus, the rules need to be modeled to allow: (a) select the rules to be labeled by the user to implicitly capture their knowledge and / or interest; (b) propagate the rules\' labels classified by the user to all not labeled rules. To do so, the rules were modeled via networks in this work, due to: (i) a large amount of network measures can be used in conjunction with the information provided by the user, to make item (a) possible; (ii) label propagation algorithms can be used in order to make item (b) possible. Therefore, we highlight that the contributions of this work are the ability to extract knowledge and / or user interest according to database characteristics and direct the user exploration without previously defining what will be explored. In addition, the results demonstrate that the proposed approach is able to direct the user to the knowledge considered interesting, reducing the amount of rules to be explored. Finally, this work also contributes to demonstrate that treat the post-processing of association rules as a problem of propagation of labels is possible.
|
10 |
Generalização de regras de associação utilizando conhecimento de domínio e avaliação do conhecimento generalizado / Generalization of association rules through domain knowledge and generalized knoeledge evaliationVeronica Oliveira de Carvalho 23 August 2007 (has links)
Dentre as técnicas de mineração de dados encontra-se a associação, a qual identifica todas as associações intrínsecas contidas na base de dados. Entretanto, essa característica, vantajosa por um lado, faz com que um grande número de padrões seja gerado, sendo que muito deles, mesmo sendo estatisticamente aceitos, são triviais, falsos, ou irrelevantes à aplicação. Além disso, a técnica de associação tradicional gera padrões compostos apenas por itens contidos na base de dados, o que leva à extração, em geral, de um conhecimento muito específico. Essa especificidade dificulta a obtenção de uma visão geral do domínio pelos usuários finais, que visam a utilização/exploração de conhecimentos úteis e compreensíveis. Assim, o pós-processamento das regras descobertas se torna um importante tópico, uma vez que há a necessidade de se validar as regras obtidas. Diante do exposto, este trabalho apresenta uma abordagem de pós-processamento de regras de associação que utiliza conhecimento de domínio, expresso via taxonomias, para obter um conjunto de regras de associação generalizadas compacto e representativo. Além disso, a fim de avaliar a representatividade de padrões generalizados, é apresentado também neste trabalho um estudo referente à utilização de medidas de interesse objetivas quando aplicadas a regras de associação generalizadas. Nesse estudo, a semântica da generalização é levada em consideração, já que cada uma delas fornece uma visão distinta do domínio. Como resultados desta tese, foi possível observar que: um conjunto de regras de associação pode ser compactado na presença de um conjunto de taxonomias; para cada uma das semânticas de generalização existe um conjunto de medidas mais apropriado para ser utilizado na avaliação de regras generalizadas / The association technique, one of the data mining techniques, identifies all the intrinsic associations in database. This characteristic, which can be advantageous on the one hand, generates a large number of patterns. Many of these patterns, even statistically accepted, are trivial, spurious, or irrelevant to the application. In addition, the association technique generates patterns composed only by items in database, which in general implies a very specific knowledge. This specificity makes it difficult to obtain a general view of the domain by the final users, who aims the utilization/exploration of useful and comprehensible knowledge . Thus, the post-processing of the discovered rules becomes an important topic, since it is necessary to validate the obtained rules. In this context, this work presents an approach for post-processing association rules that uses domain knowledge, expressed by taxonomies, to obtain a reduced and representative generalized association rule set. In addition, in order to evaluate the representativeness of generalized patterns, a study referent to the use of objective interest measures when applied to generalized association rules is presented. In this study, the generalization semantics is considered, since each semantic provides a distinct view of the domain. As results of this thesis, it was possible to observe that: an association rule set can be compacted with a taxonomy set; for each generalization semantic there is a measure set that is more appropriate to be used in the generalized rules evaluation
|
Page generated in 0.1228 seconds