• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 30
  • 5
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 130
  • 58
  • 30
  • 29
  • 21
  • 21
  • 19
  • 14
  • 13
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Efeitos da execução prévia do exercício físico e cognitivo sobre a estratégia de prova no ciclismo: um estudo acerca dos componentes centrais e periféricos da fadiga neuromuscular / Effect of prior physical and cognitive exercise on pacing strategy in cycling: a study on the central and peripheral components of neuromuscular fatigue

Marcos David da Silva Cavalcante 17 May 2016 (has links)
O objetivo do presente estudo foi analisar os efeitos da execução prévia de exercício físico e cognitivo sobre os componentes central e periférico da fadiga neuromuscular durante um teste contrarrelógio de 4 km de ciclismo. Para tanto, oito ciclistas treinados (n = 8) participaram de três diferentes estudos. No estudo 1, os atletas realizaram o teste contrarrelógio após assistir documentário (CON) ou após tarefa cognitiva (TC). No estudo 2, o teste de 4 km de ciclismo foi realizado após 100 drop jumps (DJ), 48 horas após 100 drop jumps (48h-DJ) e sem a realização prévia de exercício (CON). No estudo 3, o teste contrarrelógio foi realizado após fadiga prévia de membros superiores (FB) e inferiores (FP) e sem fadiga prévia (CON). Em todos os estudos, parâmetros de fadiga central e periférica foram avaliados por meio da técnica de estimulação elétrica no nervo femoral em repouso, pré e pós 4km de ciclismo. Estudo 1: O desempenho foi similar (P> 0,05) entre CON (376 ± 26,9 s) e TC (376,3 ± 26 s). Do mesmo modo, não encontramos diferenças significativas (P> 0,05) para parâmetros de fadiga central e periférica entre CON e TC. Estudo 2. O desempenho foi significativamente (P< 0,05) prejudicado em DJ (-2,3%) e houve uma tendência em 48h-DJ (-1,8%). A redução no desempenho em 48h-DJ foi devido à menor potência na parte inicial da prova (P< 0,05). Em DJ a piora no desempenho foi em decorrência de menor potência (P< 0,05) na parte inicial e final da prova. Houve uma exacerbada (P< 0,05) fadiga periférica após o contrarrelógio em DJ (1Hzpot= -44,7%) comparado com CON (1Hzpot= -20,1%). Além disso, significante fadiga de baixa frequência foi observada em DJ comparado com CON. Por outro lado, parâmetros de fadiga central e periférica apresentaram valores similares entre CON e 48h-DJ (P> 0,05). No entanto, foi encontrado aumento significativo (P< 0,05) na dor muscular tardia em 48hDJ comparado com CON e DJ. Estudo 3: O desempenho foi reduzido em FP (-2,3%) e FB (-1,5%) quando comparado com CON. O menor desempenho nas condições FP e FB foi acompanhado por redução na potência (P< 0,05) na parte inicial (condição FP) e na parte final (condições FP e FB) a prova. Ao final dos 4 km de ciclismo, os participantes apresentaram menor (P< 0,05) fadiga periférica em FB (1Hzpot= -11,9%) comparado com CON (1Hzpot= -20,1%). Em FP, houve maior fadiga periférica em comparação a condição CON e FB. Em conclusão, os resultados destes estudos sugerem que apenas a execução prévia de exercício envolvendo a musculatura utilizada no ciclismo promove alterações nos componentes periféricos da fadiga neuromuscular após 4 km de ciclismo / The aim of this study was to analyze the effects of previous execution of physical exercise and cognitive on the central and peripheral components of the neuromuscular fatigue during a 4 km cycling time trial. Eight trained cyclists (n = 8) participated of three different studies. In study 1, the athletes performed the 4 km cycling time trial test after watching a documentary (CON) or after a cognitive task (CT). In study 2, the 4-km cycling test was performed after 100 drop jumps (DJ), 48 hours after 100 drop jumps (48h-DJ) and without previous exercise (CON). In study 3, the time trial was performed after pre-fatigue of the upper (FU) and lower (FL) body and without prefatigue (CON). In all studies, central and peripheral fatigue parameters were evaluated via electrical stimulation in femoral nerve at rest, before and after 4km cycling. Study 1: Performance was similar (P> 0.05) between CON (376 ± 26.9 s) and TC (376.3 ± 26 s). Likewise, we found no significant differences (P> 0.05) for parameters of central and peripheral fatigue between CON and CT. Study 2: Performance was significantly (P< 0.05) impaired in DJ (-2.3%) and there was a trend in 48h-DJ (-1.8%). This reduction in performance in 48h-DJ was due to a lower power at first part of the time trial (P< 0.05). In DJ condition, loss in performance was due to lower power (P< 0.05) at the start and end phases of the test. There was exacerbated (P <0.05) peripheral fatigue after the time trial in DJ (1Hzpot = -44.7%) compared to CON (1Hzpot = 20.1%). Furthermore, a significant low frequency fatigue was observed in DJ compared to CON. On the other hand, central and peripheral fatigue parameters showed similar values between CON and 48h-DJ (P> 0.05). However, a significant increase in delayed onset muscle soreness was found in 48h-DJ than CON and DJ. Study 3: Performance was reduced in FU (-2.3%) and FL (-1.5%) compared to CON. The lowest performance was accompanied by a reduction in power (P< 0.05) in the initial (FL) and final (FL and FU phases of the time trial. After 4 km cycling, participants had a lower (P< 0.05) peripheral fatigue in FU (1Hzpot = -11.9%) compared with CON (1Hzpot = -20.1%). In FL, there was a greater peripheral fatigue compared to CON and FB condition. In conclusion, the results of these studies suggest that only the previous execution of exercise involving the muscles used in cycling causes changes in the peripheral components of the neuromuscular fatigue after 4 km of cycling
62

Dorsal Spinal Cord Stimulation Obtunds the Capacity of Intrathoracic Extracardiac Neurons to Transduce Myocardial Ischemia

Ardell, Jeffrey L., Cardinal, René, Vermeulen, Michel, Armour, J. A. 01 August 2009 (has links)
Populations of intrathoracic extracardiac neurons transduce myocardial ischemia, thereby contributing to sympathetic control of regional cardiac indices during such pathology. Our objective was to determine whether electrical neuromodulation using spinal cord stimulation (SCS) modulates such local reflex control. In 10 anesthetized canines, middle cervical ganglion neurons were identified that transduce the ventricular milieu. Their capacity to transduce a global (rapid ventricular pacing) vs. regional (transient regional ischemia) ventricular stress was tested before and during SCS (50 Hz, 0.2 ms duration at 90% MT) applied to the dorsal aspect of the T1 to T4 spinal cord. Rapid ventricular pacing and transient myocardial ischemia both activated cardiac-related middle cervical ganglion neurons. SCS obtunded their capacity to reflexly respond to the regional ventricular ischemia, but not rapid ventricular pacing. In conclusion, spinal cord inputs to the intrathoracic extracardiac nervous system obtund the latter's capacity to transduce regional ventricular ischemia, but not global cardiac stress. Given the substantial body of literature indicating the adverse consequences of excessive adrenergic neuronal excitation on cardiac function, these data delineate the intrathoracic extracardiac nervous system as a potential target for neuromodulation therapy in minimizing such effects.
63

Device, Method, and Algorithm to Assess Changes in Cardiac Output via Intracardiac Impedance Monitoring

Schau, Geoffrey Fredrick 12 June 2015 (has links)
Cardiac output, the volume of blood pumped by the heart over time, is a powerful clinical metric used by physicians to assess overall cardiac health and patient well-being. However, current cardiac output estimation methods are typically invasive, time-consuming, expensive, or some combination of all three. Patients that receive artificial cardiac pacemaker devices are particularly susceptible to cardiac dysfunction and often require long-term cardiac monitoring support. This thesis proposes a novel cardiac output monitoring solution which leverages an implantable intracardiac medical device. The principles of traditional impedance cardiography, an established cardiac output monitoring technique in practice for over fifty years, have been adapted to incorporate a leadless artificial cardiac pacemaker, an implantable medical device contained entirely within the heart. This novel method, colloquially referred to as Z-Cardio, monitors time-varying intracardiac impedance modulation to assess changes in cardiac output. In this study, technologies both old and new are synthesized to produce a novel and effective method of monitoring a critical metric of cardiac health.
64

Simulation of Packet Pacing in Small-Buffer Networks

Misra, Anindya 01 January 2010 (has links) (PDF)
The growing use of the internet and the wide variety of applications which run on it puts a considerable demand for high bandwidth networks. All optical core networks are one such possible networks which cater to the demand of high bandwidths.Since the all optical routers use the fiber delay lines as optical buffers, it is impossible to build optical buffers of such high capacity.The present day solutions for optical buffers are fiber delay lines(FDL) which are nothing but long optical fiber lines which are convoluted and folded in order to provide the necessary delay in transmission resulting in a small buffer which can store packets and thus can be used as a buffer.If we consider the example of a single TCP source sending an infinite amount of data with packets of constant size with the flow passing through a single router. If we make an assumption that the sender's access link is much faster than the receiver's bottleneck link of capacity, it will cause packets to be queued at the router.We propose a mechanism to pace traffic in the network based on the queue length of the buffer in the output port. The underlying principle delays the transmission of the packet depending on the instantaneous queue length of the buffer.A prototype of such a model was simulated in network simulator and the performance metrics were measured.
65

The SPEED Study: <b>S</b>elf <b>P</b>aced <b>E</b>xercise and <b>E</b>ndpoint <b>D</b>efinition

Hanson, Nicholas Jon 24 July 2013 (has links)
No description available.
66

Applied HW/SW Co-design: Using the Kendall Tau Algorithm for Adaptive Pacing

Chee, Kenneth W 01 June 2013 (has links) (PDF)
Microcontrollers, the brains of embedded systems, have found their way into every aspect of our lives including medical devices such as pacemakers. Pacemakers provide life supporting functions to people therefore it is critical for these devices to meet their timing constraints. This thesis examines the use of hardware co-processing to accelerate the calculation time associated with the critical tasks of a pacemaker. In particular, we use an FPGA to accelerate a microcontroller’s calculation time of the Kendall Tau Rank Correlation Coefficient algorithm. The Kendall Tau Rank Correlation Coefficient is a statistical measure that determines the pacemaker’s voltage level for heart stimulation. This thesis explores three different hardware distributions of this algorithm between an FPGA and a pacemaker’s microcontroller. The first implementation uses one microcontroller to establish the baseline performance of the system. The next implementation executes the entire Kendall Tau algorithm on an FPGA with varying degrees of parallelism. The final implementation of the Kendall Tau algorithm splits the computational requirements between the microcontroller and FPGA. This thesis uses these implementations to compare system-level issues such as power consumption and other tradeoffs that arise when using an FPGA for co-processing.
67

Machine Learning assisted gNodeB Data Link Layer Capacity Management

Axelsson, Adam January 2023 (has links)
In the uplink direction of 5G New Radio, signals are sent between Ra-dio Units and Digital Units. The production of these signals is non-deterministic, leading to signals often being produced in bursts. Thesesignal bursts can lead to exceeding the Data Link Layer capacity, whichcauses packet losses. It is possible to control the burstiness by delay-ing signals over time. However, excessive delays should be avoidedsince the processing of signals must be completed within strict time con-straints. In this paper, two machine-learning-based algorithms with theobjective of avoiding packet losses by introducing delays to signals wereproposed. One algorithm was based on the symbol number of the sig-nals, and the other one used a queue-based approach. Only the symbol-based algorithm was thoroughly evaluated. Visualizations of test data,as well as lab tests, showed that the symbol-based algorithm was ableto efficiently delay signals in order to reduce the maximum load on theData Link Layer.
68

Characterization of Conduction Abnormalities in Canine Models of Atrial Arrhythmias

Ryu, Kyungmoo 07 April 2005 (has links)
No description available.
69

Odstranění stimulačních hrotů ze signálu elektrokardiografu / Removal of pacing spikes from the electrocardiographic signal

Smíšek, Radovan January 2015 (has links)
The goal of this thesis is to detect pacing pulses in ultra high-frequency ECG so as to remove these pacing pulses. It makes evaluation of higher frequency components of QRS complex possible. This evaluation is impossible while pacing pulses are present. Chosen issue is solved using heuristic algorithm. Algorithm uses spacing of signal by line in the area which is not influenced by pacing pulses. Subsequently this line is made longer and using differences between line and signal (or another rules) edges of pacing pulses are detected. The top of the stimulation tip is detected by thresholding envelope of original signal´s first difference. More algorithms are tested in this thesis. Several methods of removing pacing pulses are suggested in thesis. Envelopes of high-frequency components are created. Envelopes are analyzed subsequently and suggested methods of removing pacing pulses are compared on the basis of these analysis. Finally the detection efficiency is evaluated.
70

Objective Analysis Methods in the Mechanics of Sports

Swarén, Mikael January 2016 (has links)
Sports engineering can be considered as the bridge between the knowledge of sports science and the principles of engineering and has an important role not only in improving the athletic performance, but also in increasing the safety of the athletes. Testing and optimization of sports equipment and athletic performance are essential for supporting athletes in their quest to reach the podium. However, most of the equipment used by world-class athletes is chosen based only on subjective tests and the athletes’ feelings. Consequently, one of the aims of this thesis was to combine mechanics and mathematics to develop new objective test methods for sports equipment. Another objective was to investigate the possibility to accurately track and analyse cross-country skiing performance by using a real-time locating system. A long term aim is the contribution to increased knowledge about objective test and analysis methods in sports. The main methodological advancements are the modification of established test methods for sports equipment and the implementation of spline-interpolated measured positioning data to evaluate cross-country skiing performance. The first two papers show that it is possible to design objective yet sport specific test methods for different sports equipment. New test devices and methodologies are proposed for alpine ski helmets and cross-country ski poles. The third paper gives suggestions for improved test setups and theoretical simulations are introduced for glide tests of skis. It is shown, it the fourth paper, that data from a real-time locating system in combination with a spline model offers considerable potential for performance analysis in cross-country sprint skiing. In the last paper, for the first time, propulsive power during a cross-country sprint skiing race is estimated by applying a power balance model to spline-interpolated measured positioning data, enabling in-depth analyses of power output and pacing strategies in cross-country skiing. Even though it has not been a first priority aim in this work, the results from the first two papers have been used by manufacturers to design new helmets with increased safety properties and cross-country ski poles with increased force transfer properties. In summary, the results of this thesis demonstrate the feasibility of using mechanics and mathematics to increase the objectiveness and relevance when analysing sports equipment and athletic performance. / <p>QC 20160927</p>

Page generated in 0.0879 seconds