• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 31
  • 21
  • 15
  • 12
  • 9
  • 9
  • 7
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 286
  • 286
  • 33
  • 29
  • 28
  • 26
  • 24
  • 24
  • 24
  • 20
  • 18
  • 18
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Suramin as a chemo- and radio-sensitizer: preclinical translational studies

Xin, Yan 14 July 2006 (has links)
No description available.
172

Simultaneously targeting hypoxic cancer cells by hsp90 inhibitor and glycolysis inhibitor in pancreatic cancer therapy

Cao, Xianhua 08 March 2007 (has links)
No description available.
173

Expression and Function of microRNA in Human Cancer

Lee, Eun Joo 11 September 2008 (has links)
No description available.
174

Musculoskeletal Effects of Oncostatin M in Pancreatic Cancer Cachexia

Jengelley, Daenique Heather Andrene 07 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Pancreatic Ductal Adenocarcinoma (PDAC) is the third leading cause of cancerrelated deaths with a five-year survival rate of 11%. PDAC tumors are characterized by a dense desmoplastic stromal microenvironment, mediated in part through local cytokine production. PDAC tumors also elicit a systemic inflammatory response in the host; this, combined with a loss of body weight due to muscle and fat wasting, is characteristic of cachexia. Understanding the molecular mechanisms that drive malignant inflammation is critical to improve PDAC therapy and increase patient survival. Oncostatin M (OSM) belongs to the IL-6/GP130 family of cytokines, members of which have been shown to promote PDAC tumor development, inflammation, and cachexia. Much less is known of OSM. My central hypothesis was that OSM promotes pancreatic cancer and cachexia by inducing local and systemic inflammation, fibrosis, and wasting via OSM signaling through the receptor, OSM receptor (OSMR). We investigated effects of exogenous OSM administration in wildtype and IL-6 null mice without cancer. OSM induced systemic fibrosis, bone loss, local muscle wasting, and cardiac dysfunction in presence and absence of IL-6. We further defined the roles of OSM/OSMR in the pancreatic cancer microenvironment and macroenvironment. OSM activated genes involved in inflammation, fibrosis, and tumor progression in both tumor cells and fibroblasts and altered the tumor microenvironment, promoting a dense compaction of tumor cells and cancer associated fibroblasts. Loss of systemic OSM signaling altered tumor metabolism and reduced the stromal compartment without affecting tumor size. Loss of OSMR signaling in tumor cells reduced tumor size and promoted survival. However, systemic loss of OSM or OSMR in host cells did not halt effects of cachexia including muscle dysfunction, atrophy, or inflammation/anemia. Overall, OSM/OSMR signaling in the microenvironment is necessary in modulating tumor phenotype and promoting survival in PDAC but may not be necessary for pancreatic cancer cachexia. / 2024-08-02
175

GPCR Signaling in the Genesis and Progression of Pancreatic Cancer

Gardner, Jacob Andrew January 2009 (has links)
Ductal adenocarcinomas of the pancreas are the 4th most common cause of cancer death. The 1 and 5 year survival rates for all stages combined are currently 26% and 5% respectively. Median survival is less than 6 months. Despite remarkable progress in the fields of genetics, cancer biology, and advances in surgical techniques as well as chemotherapeutics, our ability to recognize and treat patients with pancreatic cancer remains poor. GPCR signaling modules have been increasingly implicated in the genesis and progression of pancreatic cancers. Aberrant agonist production, receptor expression and dysfunctional signaling resulting from genomic instability in a background of a heterotopic tumor-stromal microenvironment, contribute to the initiation, progression, and eventual metastasis of the disease. Numerous GPCR agonists, including lysophosphatidic acid (LPA), along with their cognate receptors have been implicated in this oncogenic process. LPA, one of the simplest bioactive lipids, has been shown to be a potent stimulant of metastatic behavior in in vitro models. It also acts as a mitogen by inducing proliferation and cell survival pathways in various normal and transformed cell lines. In patients with pancreatic cancer both the receptors and ligand have been found to be overexpressed. It has been noted that pancreatic cancer cell lines expressing higher levels of the LPA receptors present with greater motility. This has led to the hypothesis that LPA contributes to the progression of pancreatic cancer through the promotion of a metastatic phenotype. However, the underlying mechanisms have not been well described. LPA receptors have been shown to couple to the Gi, Gq, or G12 family of heterotrimeric G proteins. Consequently, signals transduced through these receptors have been shown to stimulate Gαi, Gαq, and Gα12/13 dependent pathways. While earlier studies have linked Gαi to LPA induced migration, there is recent evidence to suggest that Gα13 may provide a major signaling mechanism for LPA receptors stimulating migration in diverse cell types including cancer cell lines. Given the ominous nature of pancreatic cancers it is of critical importance to understand the mechanisms that promote more malignant phenotypes and to assess the role of Gα13 in this process. The goal of this thesis therefore is to define the role of Gα13 in LPA-mediated migration of pancreatic cancer cells. To assess the oncogenic potential of LPA and the role of Gα13 in stimulating the migration of pancreatic cancer cells, a panel of pancreatic cancer cell lines was assembled and characterized with regard to their expression of the LPA receptors as well as the Gα subunits of the heterotrimeric G proteins. These cell lines were further studied through a series of proliferation, wound healing, and transwell migration assays to assess the role of LPA in the induction of proliferation and migration in pancreatic cancer cells. The results demonstrated that LPA functions as a mitogen in certain pancreatic cancer cell lines, but is a potent stimulant of cell motility and invasive migration. Interestingly, these studies indicated that this response proceeds through routes that may not involve Gαi, as a potent migratory response was observed in MDAPanc28 cells which lack expression of the Gαi subunit. This was verified through the transwell assays conducted in the presence of PTX demonstrating that migration occurs independently of PTX sensitive mechanism and thus independently of Gαi.. Using a dominant negative mutant strategy, the studies presented in this thesis establishes the role of Gα13 in mediating LPA-LPAR stimulated migration of pancreatic cancer cells. Using pancreatic cancer cell lines that stably express the competitively inhibitory dominant negative mutant of Gα13, the ability of these mutants to inhibit a LPA mediated migratory response was monitored by wound-healing as well as transwell migration assays The results of these studies indicated a substantial attenuation of the migratory response and demonstrated for the first time the critical role of Gα13in LPA induced migration in a pancreatic cancer cell line. / Molecular Biology and Genetics
176

DEVELOPMENT OF CLICK HYDROGEL MODELS TO STUDY PANCREATIC CANCER CELL FATE

Chun-Yi Chang (19207171) 27 July 2024 (has links)
<p dir="ltr">PDAC, the most common type of pancreatic cancer, is a highly metastatic cancer that has a low survival rate. It is histologically characterized by a thick desmoplastic stroma. Counterintuitively, PCCs can still manage to survive in such a restrictive environment and even metastasize to distant organs. Over the years, efforts have been made to find out the mechanisms underlying these perplexing behaviors. However, questions about the role of ECM accumulation and enhanced stiffness in PCC dissemination remained unanswered. In this dissertation, we aim to advance the material design for tumor modeling, and propose an explanation for the malignant cell behavior in the PDAC TME. This is achieved through the use of hydrogel-based tumor models that recapitulate the elevated stiffness of the tumor tissue. Specifically, hydrogel stiffness was tuned to mimic the PDAC TME to understand how PCCs and CAFs respond to various substrate stiffnesses temporally. Next, we employ bio-orthogonal click chemistries to create hydrogels with on-demand stiffening capabilities, as well as hyaluronic acid deposition in the hydrogel, to investigate the effect of dynamic change in matrix stiffness and composition on PDAC cells and CAFs. Lastly, by leveraging thiol-norbornene, aldehyde-hydrazide, and tetrazine-norbornene click chemistries, we created a microporous hydrogel system with a conformation that combines both the advantage of 3D cell culture and the non-restricting nature of 2D cell culture. Additionally, the system allows the application of modularized user-defined factors, including, but not limited to stiffness and HA deposition to the system. Stiff gel in 2D facilitated cell spreading of Pa03C in the presence of CAF. Despite being more restrictive on cell spreading, stiff gelatin gel in 3D induced cytokines that promote matrix remodeling and spreading cell morphology can be restored by stiffening with HA. Overall, this dissertation demonstrated that ECM component (i.e., HA), culture dimensionality, and cell-cell interaction play a huge role in cell behavior, and these factors may interact with each other and result in synergistic effects.</p>
177

Novel Approaches in Pancreatic Cancer Treatment: Bridging Mechanics, Cells, and Immunity

Imran, Khan Mohammad 04 January 2024 (has links)
The heterogeneity of pancreatic cancer renders many available general therapies ineffective holding the five-year survival rate close to 10% for decades. Surgical resection eligibility, resistance to chemotherapy and limited efficacy of immunotherapy emphasize the dire need for diverse and innovative treatments to combat this challenging disease. This study evaluates co-therapy strategies that combine non-thermal, minimally invasive ablation technology and targeted drug delivery to enhance treatment efficacy. Our research begins by uncovering the multifaceted potential of Irreversible Electroporation (IRE), a cutting-edge non-thermal tumor ablation technique. This study demonstrates IRE-mediated ability to trigger programmed necrotic cell death, induce cell cycle arrest, and modulate immune cell populations within the tumor microenvironment. This transformation from a pro-tumor state to a proinflammatory milieu, enriched with cytotoxic T lymphocytes and neutrophils. IRE-induced proinflammation in the tumor site renders immunologically "cold" tumor into immunologically "hot" tumor and holds significant promise of improving treatment efficacy. Notably, IRE-treated mice exhibited an extended period of progression-free survival, implying clinical potential. The transient nature of these effects suggests potential mechanisms of tumor recurrence highlighting the need for further studies to maximize the efficacy of IRE. Our mechanistic studies evaluated the IFN-STAT1-PD-L1 feedback loop as a possible reason for pancreatic tumor recurrence. Our data also suggest a stronger IFN-PD-L1 feedback loop compared to mammary, osteosarcoma and glioblastoma tumors rendering pancreatic cancer immunologically "cold". This study also investigates the use of histotripsy (a non-thermal, noninvasive, nonionizing ultrasound-guided ablation modality) to treat pancreatic cancer utilizing a novel immunocompromised swine model. We successfully generated human orthotopic pancreatic tumors in the immune deficient pigs, which allowed for consequent investigation of clinical challenges presented by histotripsy. While rigorous clinical studies are indispensable for validation, the promise of histotripsy offers new hope for patients. In parallel, we used our immunocompromised swine model of orthotopic pancreatic cancer to investigate the SonoTran® system, which employs ultrasound-activated oscillating particles to enhance drug delivery within hard-to-reach tumors. Our study demonstrates that SonoTran® significantly enhances the intratumoral penetrance of therapeutic agents, including commonly used chemotherapy drugs like paclitaxel and gemcitabine. Additionally, SonoTran® improved delivery of the anti-epidermal growth factor (EGFR) monoclonal antibody, cetuximab- which is frequently used in cancer immunotherapy. Together, our findings address challenges in the delivery of a range of therapeutics while simultaneously exposing challenges like off-target damage. In conclusion, this study presents a multifaceted approach to confront the complex characteristics of pancreatic cancer. Given the variations in patient response and the complexity of the disease, it is clear that a singular solution is unlikely. Our research, which combines IRE, histotripsy, and SonoTran®, to interrogate a promising array of tools to tackle different challenges to provide tailored treatments. In the ever-evolving landscape of pancreatic cancer therapy, this research opens new avenues to investigate deeper into molecular mechanisms, co-therapy treatment options, future preclinical and clinical studies which eventually encourage the potential for improved patient outcomes. / Doctor of Philosophy / Pancreatic cancer is a formidable disease, known for its late-stage diagnosis and limited treatment options with a poor 5-year survival rate of ~10%. However, a promising frontier in the battle against this lethal disease has emerged through combining mechanical, cell based and immunotherapies to attack the cancer from multiple angles at once. In my PhD research, I explored novel approaches to transform the landscape of pancreatic cancer treatment. We began by investigating Irreversible Electroporation (IRE), a non-thermal method to ablate tumors. Beyond its known function of reducing tumor size, IRE initiated programmed necrotic cell death, halted tumor cell division, and triggered changes in the immune landscape within the tumor. In response to IRE treatment, the immune environment shifted from pro-tumor to proinflammatory state, showing potential for clinical use. Mice treated with IRE experienced extended cancer progression-free survival temporarily, followed by eventual relapse. During relapse, we found that immune cells reverted back to their original, pre- IRE treated state. This observation logically implies combining IRE and immune checkpoint inhibitors aimed towards maintaining the IRE-altered immunological environment. Next, we developed and used novel pig models that closely resemble human pancreatic cancer patients to test histotripsy, a first phase toward making histotripsy as a non-invasive treatment approach for pancreatic cancer. Use of orthotopic tumor in a large animal model and clinical device allowed us to expose some challenges of ultrasound guidance of histotripsy. Notably, the treatment results in partial ablation and a reduction in stroma materials, which play a role in the tumor's resistance to commonly used treatments. While rigorous clinical studies are needed for validation, this approach offers hope in the quest for innovative pancreatic cancer treatment. Another promising approach we investigated involves SonoTran® particles, ultrasound-activated oscillating particles that can increase drug absorption in a targeted fashion. Our study demonstrated increased concentrations of commonly used therapeutic agents within tumors through SonoTran®-facilitated delivery, providing an effective means to overcome drug delivery issues within pancreatic tumors. There is no one size fits all treatment to address the complexity of pancreatic cancer. The future of treatment lies in the integration of IRE, histotripsy and SonoTran® into clinical practice. In summary, this PhD research identified promising novel technologies and combinations of treatments for pancreatic cancer, reaffirming the importance of exploring innovative solutions to combat pancreatic cancer. The dynamic nature of the pancreatic tumor microenvironment underscores the importance of further research to extend the positive impacts of these treatments and improve tumor debulking.
178

The anti-tumor efficacy of 2-deoxyglucose and D-allose are enhanced with p38 inhibition in pancreatic and ovarian cell lines

Malm, S. W., Hanke, N. T., Gill, A., Carbajal, L., Baker, A. F. January 2015 (has links)
PURPOSE: The anti-tumor activity of glucose analogs 2-deoxy-glucose (2-DG) and D-allose was investigated alone or in combination with p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190 or platinum analogs as a strategy to pharmacologically target glycolytic tumor phenotypes. METHODS: Hypoxia inducible factor-1 alpha (HIF-1alpha) protein accumulation in pancreatic cell lines treated with SB202190 alone and in combination with glucose analogs was analyzed by Western blot. HIF-1alpha transcriptional activity was measured in MIA PaCa-2 cells stably transfected with a hypoxia response element luciferase reporter following treatment with glucose analogs alone, and in combination with SB202190. Induction of cleaved poly(ADP-ribose) polymerase (PARP) was measured by Western blot in the MIA PaCa-2 cells. In vitro anti-proliferative activity of 2-DG and D-allose alone, or in combination with oxaliplatin (pancreatic cell lines), cisplatin (ovarian cell lines), or with SB202190 were investigated using the MTT assay. RESULTS: SB202190 decreased HIF-1alpha protein accumulation and transcriptional activity. 2-DG demonstrated greater anti-proliferative activity than D-allose. Pre-treatment with SB202190 enhanced activity of both 2-DG and D-allose in MIA PaCa-2, BxPC-3, ASPC-1, and SK-OV-3 cells. The combination of D-allose and platinum agents was additive to moderately synergistic in all but the OVCAR-3 and HEY cells. SB202190 pre-treatment further enhanced activity of D-allose and 2-DG with platinum agents in most cell lines investigated. CONCLUSIONS: SB202190 induced sensitization of tumor cells to 2-DG and D-allose may be partially mediated by inhibition of HIF-1alpha activity. Combining glucose analogs and p38 MAPK inhibitors with chemotherapy may be an effective approach to target glycolytic tumor phenotypes.
179

Die Wirkung des targeted Chemotherapeutikums AESZ-108 (AN-152) auf GnRH- positive Pankreaskarzinomzelllinien / The effect using targeted chemotherapy AEZS-108 (AN-152) for LHRH receptor-positive pancreatic cancers

Ernst, Jennifer 27 October 2016 (has links)
Die Überlebensrate von Patienten mit duktalem Adenokarzinom des Pankreas ist sowohl in primär resektablen als auch im lokal fortgeschrittenen und metastasierten Stadium kurz. Das duktale Adenokarzinom des Pankreas breitet sich rasch aus und wird aufgrund fehlender Frühsymptome oft erst im fortgeschrittenen Stadium diagnostiziert. Gegenwärtig fehlen spezifische Tumormarker, die eine frühzeitige Diagnose erlauben würden. Aufgrund zahlreicher Mechanismen der primären und sekundären Chemoresistenz ist das Pankreaskarzinom verhältnismäßig resistent gegenüber konventioneller systemisch verabreichter Chemotherapie, antikörperbasierten sowie niedermolekularen Therapiestrategien, Enzyminhibitoren, Bestrahlung und chirurgischer Therapie. Ein vielversprechender Angriffspunkt zur zielgerichteten Therapie des Pankreaskarzinoms eröffnet die tumorspezifische Expression des GnRH-I Rezeptors. In dieser Arbeit konnte der GnRH-IRezeptor durch RT-PCR und immunhistochemisch in 32,5% der duktalen Adenokarzinome des Pankreas nachgewiesen werden. Es wurde gezeigt, dass die Behandlung mit dem Hybridwirksoff AESZ-108 (AN-152), einem zytotoxischen GnRH-Analogon in vitro und in vivo Apoptose in den GnRH-IRezeptor- positiven Pankreaskarzinomzelllinien induziert. Apoptose wurde durch den intrinsischen Signalweg über den Zusammenbruch des mitochondrialen Membranpotentials vermittelt und führte zu DNA-Fragmentierung des Nukleus wie fluoreszenzmikroskopisch gezeigt werden konnte. Das zytotoxische GnRH-Analogon AESZ-108 (AN-152) führt in vivo zu einer signifikanten Inhibition des Tumorwachstums im Vergleich zur Therapie mit dem Anthrazyklin Doxorubicin, welches zu keiner signifikanten Inhibition des Pankreaskarzinomwachstums führt. Die rezeptorvermittelte Aufnahme ermöglicht eine selektive Therapie. Nach rezeptorvermittelter Endozytose wird das an die D-Lys6-Seitenkette gebundene Doxorubicin spezifisch im Nukleus der rezeptorpositiven Karzinomzellen freigesetzt. Die Ergebnisse dieser Arbeiten zeigen, dass AESZ-108 (AN-152) ein geeigneter Ansatz zur selektiven Chemotherapie GnRH-I-Rezeptor positiver humaner duktaler Adenokazinome des Pankreas ist.
180

Stromal components and micro-RNAs as biomarkers in pancreatic cancer

Franklin, Oskar January 2016 (has links)
Background Pancreatic ductal adenocarcinoma (PDAC) patients have the poorest 5-year survival rates of all cancer forms. It is difficult to diagnose at early disease stages, tumour relapse after surgery is common, and current chemotherapies are ineffective. Carbohydrate antigen 19-9 (Ca 19-9), the only clinically implemented PDAC biomarker, is insufficient for diagnostic and screening purposes. PDAC tumours are characterised by a voluminous stroma that is rich in extracellular matrix (ECM) molecules such as collagens, hyaluronan (HA) and matricellular proteins. These stromal components have been suggested to promote PDAC cell migration, proliferation, evasion of apoptosis and chemotherapy resistance. Those events are mediated via interactions with adhesion receptors, such as integrins and CD44 receptors expressed on cancer cell surfaces. Micro-RNAs (miRNA) post-transcriptionally regulate gene expression in health and disease. At the time of PDAC diagnosis, miRNA levels are altered both in plasma and tumour tissue. Before PDAC diagnosis, tissue miRNA levels are altered in precursor lesions, raising the possibility that plasma miRNAs might aid in early detection. In this thesis, it is hypothesised that stromal components and miRNAs can serve as tissue or blood based biomarkers in PDAC. The aims are: (1) to characterise the expression of stromal components and their receptors in normal and cancerous tissue; (2) to find potential stroma-associated tissue and blood-based biomarkers for diagnosis and prognosis estimates; (3) to determine the cellular effects of type IV collagen (Col IV) in PDAC; (4) to determine if plasma miRNAs that are altered in manifest PDAC can be used to diagnose PDAC earlier. Methods The expression patterns of Col IV, Col IV-binding integrin subunits (α1, α2, β1), Endostatin, Osteopontin (OPN) and Tenascin C (TNC) were analysed in frozen PDAC and normal pancreatic tissue. A tissue microarray (TMA) was constructed using formalin-fixed, paraffin-embedded primary tumours and lymph node metastases. The TMA was used to study the expression levels and associations with survival of the standard CD44 receptor (CD44s), its variant isoform 6 (CD44v6), HA, OPN and Col IV. Circulating levels of HA, Col IV, Endostatin, OPN and TNC were measured in PDAC patients and healthy individuals, and compared with conventional tumour markers (Ca 19-9, CEA, Ca 125 and TPS). The functional roles of Col IV were studied in PDAC cell lines by: (1) growth on different matrices (2) blocking Col IV binding integrin subunits, (3) blocking the Col IV domains 7s, CB3 and NC1, and (4) by down regulation of PDAC cell synthesis of Col IV using siRNA transfection. Plasma miRNAs alterations were screened for in samples from patients with manifest disease, using real-time quantitative PCR (RT-qPCR). To find early miRNA alterations, levels of those miRNAs that were altered at diagnosis were measured in prediagnostic plasma samples. Results High tissue expression of both the standard CD44 receptor (CD44s) and its variant isoform CD44v6 as well as low expression of stromal OPN were associated with poor survival. In addition, high CD44s and low OPN predicted poor survival independent of established prognostic factors. Circulating Col IV, Endostatin, OPN, TNC and HA were increased in preoperative samples from PDAC patients. Preoperatively, higher levels of serum-HA and plasma-Endostatin were associated with shorter survival. Postoperatively, higher levels of Col IV, Endostatin and OPN were associated with shorter survival. On the contrary, only one of the conventional tumour markers was associated with survival (Ca 125). Col IV stimulated PDAC cell proliferation and migration and inhibited apoptosis in vitro, dependent on the collagenous domain (CB3) of Col IV and the Col IV binding integrin subunit β1. Reduced endogenous Col IV synthesis inhibited these effects, suggesting that PDAC cells synthesise Col IV to stimulate tumour-promoting events via a newly discovered autocrine loop. 15 miRNAs were altered in early stage PDAC patients and the combination of these markers outperformed Ca 19-9 in discriminating patients from healthy individuals. However, none of the miRNAs were altered in prediagnostic samples, suggesting that plasma miRNA alterations appear late in the disease course. Conclusions Up regulated stromal components in PDAC tumours are detectable in blood samples and are potential diagnostic and prognostic biomarkers in PDAC. High circulating levels of Col IV, Endostatin, OPN and HA predict poor survival, as well as high expression of CD44s and CD44v6 and low expression of OPN in tumour tissue. PDAC cells synthesise Col IV, which forms BM-like structures close to cancer cells and promote tumour progression in vitro via an autocrine loop. Several plasma-miRNAs are altered in PDAC, but are not useful for early discovery.

Page generated in 0.1012 seconds