1 |
Bioconversion of paper mill lignocellulosic materials to lactic acid using cellulase enzyme complex and microbial culturesMukhopadhyay, Achira January 1900 (has links)
Master of Science / Department of Grain Science and Industry / Praveen V. Vadlani / Paper mill sludge is a solid waste generated from the paper-making industry. Cellulose in the sludge can be hydrolyzed into glucose using a cellulase enzyme complex, which can then be fermented to produce value added chemicals, such as lactic acid. The enzyme requirement for hydrolysis of the cellulose in paper sludge was benchmarked against paper pulp. Enzymatic requirements for complete conversion of cellulose in paper pulp was found to be 12 fpu cellulase, supplemented with 5 egu of beta-glucosidase per gram of cellulose. However, beta-glucosidase supplementation had to be increased to 38 egu to obtain a similar level of hydrolysis in the case of paper sludge indicating a decrease in enzyme activity due to sludge components.
Response Surface Methodology (RSM) was used to study the lactic acid yield from paper sludge using enzyme dosage and temperature as parameters and operating in simultaneous saccharification and fermentation (SSF) mode. Maximum lactic acid yield of 0.75 g/g glucose was obtained within 36 hours using 10 fpu cellulase supplemented with 32 egu beta-glucosidase at a temperature of 39 degree C. Using the optimization function of the software, the optimal operational conditions for paper sludge hydrolysis were found to be 9 fpu cellulase, 12.5 egu beta-glucosidase at 40 degree C which resulted in a lactic acid yield of 0.58 g /g glucose.
Lactic acid producing microbial cultures, Lactobacillus plantarum and Rhizopus oryzae were evaluated for fermentation of the pulp and sludge hydrolyzate at 125-ml shake flask and 2-L fermenter levels. In paper pulp media, the yields obtained by bacterial and fungal fermentations were 0.89 and 0.36 g/g glucose, respectively. In the case of paper sludge, the yield remained same, but
inhibition of bacterial growth occurred. This resulted in lower substrate uptake and productivity than those obtained in paper pulp. On the other hand, fungal growth rate was enhanced due to the high solids content of paper sludge. The yield of lactic acid from paper sludge using L. plantarum and R. oryzae was 0.88 and 0.72 g/g glucose, respectively. Microbial cultures native to the sludge were isolated and evaluated for their performance of lactic acid production.
|
2 |
Produktion av flyktiga fettsyror genom anaerobisk rötning av pappersmassa och papperslam / Production of volatile fatty acids from pulp and paper sludgeLara, Abdla January 2022 (has links)
Recently, there has been an increased interest in the production of volatile fatty acids from pulp and paper sludge using an immersed membrane bioreactor during anaerobic digestion. The production of biogas through anaerobic digestion has been a hot topic in recent years, but it is no longer economically viable due to competition from fossil fuels. As a result, the production of volatile fatty acids has been investigated in this study using pulp and paper sludge as substrate. To investigate the effect of methane inhibition on enhanced volatile fatty acid production, various parameters, and pre-treatments such as pH, O2 presence, thermal heat shock, and chemical BES-addition were used. Heat shock pre-treatment produced the most volatile fatty acids (2.4 g/L) while producing the least methane (50 mL/g VS). The immersed membrane bioreactor was successfully used to produce volatile fatty acids for 54 days. / En av dagens problem är den ökade populationen vilket har lett till ökade mängder av avfall från mat och slam. Innan låg ett stort fokus på att använda dessa rester i en anaerobisk rötning för att producera biogas. Dock har detta visat sig att inte vara ekonomiskt hållbart just på grund av att inte kunna konkurrera med fossila bränslen, därför har man i stället fokuserat på att ta fram de intermediära produkterna från rötning processen, dvs flyktiga fettsyror. Detta projekt har fokuserat på att producera flyktiga fettsyror från pappersmassa och papperslam som är potentiellt lättare nedbrytbart, än andra lignocellulosa rika substrat. När man vill maximera flyktiga fettsyraproduktionen, då är det viktigt att samtidigt förhindra produktion av biogas. Effekten av flera olika parametrar, såsom närvaro av syre, pH, för behandling med värmechockeller BES-tillsats, för att inhibera produktion av metan har därför undersökts. Förbehandlingen med värmechock ledde till runt 2,4g/L fettsyraproduktion, tillsammans med den minsta mängden av metan, runt 50 mL/gVS. Membranreaktorn kunde användes framgångsrikt för kontinuerlig produktion av flyktiga fettsyror under 54 dagar.
|
3 |
Production of bioethanol from paper sludge using simultaneous saccharification and fermentationRobus, Charles Louis Loyalty 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: Whereas fuel used for transport and electricity production are mainly fossil–derived,
there has recently been an increased focus on bio-fuels due to the impact of fossil
derived fuel on the environment as well as the increased energy demand worldwide,
concomitant with the depletion of fossil fuel reserves. Paper sludge produced by
paper mills are high in lignocellulose and represents a largely untapped feedstock for
bio-energy production.
The aim of this study was to determine the composition, fermentability and optimum
paper sludge loading and enzyme dosage for producing ethanol from paper sludge.
This information was used to develop a model of the process in Aspen Plus®. The
mass and energy balances obtained from the Aspen Plus® model were used to
develop equipment specifications which were used to source equipment cost data. A
techno-economic model was developed from the equipment cost data to assess the
economic viability of the simultaneous saccharification and fermentation (SSF)
process utilising paper sludge as feedstock. Nine paper sludge samples obtained from Nampak Tissue (Pty) Ltd. were evaluated
in terms of ethanol production and those samples yielding the highest and lowest
ethanol titres were selected for optimisation. This allowed for the determination of a
range of ethanol concentrations and yields, expressed as percentage of the
theoretical maximum, which could be expected on an industrial scale. Response
surface methodology was used to obtain quadratic mathematical models to
determine the effects of solid loading and cellulase dosage on ethanol production
and ethanol yield from paper sludge during anoxic fed-batch fermentations using Saccharomyces cerevisiae strain MH1000. This approach was augmented with a
multi response optimisation approach incorporating a desirability function to
determine the optimal solid loading and cellulase dosage in fed-batch SSF cultures.
The multi response optimisation revealed that an optimum paper sludge loading of
21% (w/w) and a cellulase loading of 14.5 FPU g-1 be used regardless of the paper
sludge sample. The fact that one optimal enzyme dosage and paper sludge loading
is possible, regardless the paper sludge feed stock, is attractive since the SSF
process can be controlled efficiently, while not requiring process alterations to
optimize ethanol production when different batches of paper sludge are processed.
At the optimum paper sludge loading and cellulase dosage a minimum ethanol
concentration of 47.36 g l-1 (84.69% of theoretical maximum) can be expected
regardless of the paper sludge used. An economic assessment was conducted to ascertain whether ethanol production
from paper sludge using SSF is economically viable. Three scenarios were
investigated. In the first scenario revenue was calculated from the ethanol sales
linked to the basic fuel price, whereas in the second and third scenarios liquefied
petroleum gas (LPG) consumption at the paper mill was replaced with anhydrous and
95% ethanol respectively. In all the cases, paper sludge feed rates of 15, 30 and 50 t d-1
were used. The production of ethanol from paper sludge for ethanol sales (scenario 1)
resulted in higher IRR and NPV values, as well as shorter payback periods,
compared to replacement of LPG at the paper mill (scenarios 2 and 3). At an
assumed enzyme cost of $ 0.90 gal-1 (R 2.01 litre-1), IRR values of 11%, 22% and
30% were obtained at paper sludge feed rates of 15, 30 and 50 t d-1. A sensitivity analysis performed on the total capital investment and enzyme cost
revealed that the SSF process is only economically viable at a paper sludge feed rate
of 50 t d-1 irrespective of the variation in capital investment. For the SSF process to
be economically viable the enzyme costs must be lower than $ 0.70 gal-1 (R 1.56 litre-1)
and $ 1.20 gal-1 (R 2.68 litre-1) for paper sludge feed rates of 30 and 50 t d-1
respectively. The SSF process at a paper sludge feed rate of 15 t d-1 was not
economically viable even assuming a zero enzyme cost.
A Monte Carlo simulation revealed that the SSF process is economically viable at a
paper sludge feed rate of 50 t d-1 as a mean IRR value of 32% were obtained with a
probability of 26% to attain an IRR value lower than 25%. The SSF process at lower
paper sludge loadings is not economically viable as probabilities of 70% and 95%
were obtained to attain IRR values lower than 25% at paper sludge feed rates of 30
and 15 t d-1 respectively. From this study it can be concluded that paper sludge is an excellent feedstock for
ethanol production for the sales of ethanol at a paper sludge feed rate in excess of
50 t d-1 with the added environmental benefit of reducing GHG emissions by 42.5%. / AFRIKAANSE OPSOMMING: Aangesien dat brandstof vir vervoer en energie meestal vanaf fossiel afgeleide
bronne kom, is daar onlangs ʼn groter fokus op bio-brandstowwe as gevolg van die
impak van fossiel afgeleide brandstowwe op die omgewing en 'n verhoogde
aanvraag na energie wêreldwyd, gepaardgaande met die uitputting van
fossielbrandstof-reserwes. Papier slyk geproduseer deur papier meule is hoog in
lignosellulose en verteenwoordig 'n grootliks onontginde grondstof vir etanol
produksie.
Die doel van die studie was om vas te stel wat die samestelling, fermenteerbaarheid,
optimale papier slyk en ensiem ladings is vir die vervaardiging van etanol uit papier
slyk. Die inligting was gebruik om 'n model van die proses in Aspen Plus® te
ontwikkel. Die massa-en energiebalanse wat verkry is van die Aspen Plus® model
was gebruik om toerusting spesifikasies te ontwikkel wat gebruik was om toerusting
kostes te bereken. ‘n Tegno-ekonomiese model is ontwikkel om die ekonomiese
lewensvatbaarheid van die gelyktydige versuikering en fermentasie proses “SSF” wat gebruik maak van papier slyk as grondstof te assesseer.
Nege papier slyk monsters verkry vanaf Nampak Tissue (Pty) Ltd. is geëvalueer in
terme van etanol produksie. Die monsters wat die hoogste en laagste etanol
konsentrasies opgelewer het, is geselekteer vir optimalisering omdat dit toegelaat het
vir die vasstelling van etanol konsentrasies en opbrengste, uitgedruk as persentasie
van die teoretiese maksimum, wat verwag kan word in industrie. Reaksie oppervlak
metodologie “RSM” is gebruik om wiskundige modelle te ontwikkel om die impak van
papier slyk lading en sellulase dosis op etanol produksie en etanol opbrengs te assesseer. Die RSM is aangevul met 'n multi effek optimiserings benadering wat 'n
wenslikheid funksie inkorporeer om die optimale papier slyk lading en sellulase dosis
in gevoerde-enkellading SSF kulture te bepaal. Die multi effek optimalisering het
getoon dat 'n optimale papier slyk lading van 21% (w/w) en 'n sellulase dosis van
14.5 FPU g-1 gebruik moet word, ongeag van die papier slyk monster. Die feit dat die
optimale ensiem dosis en papier slyk lading dieselfde is ongeag die papier slyk
monster, is aantreklik aangesien die SSF proses meer doeltreffend beheer kan word
omdat proses veranderinge nie nodig is om die proses te optimaliseer nie. By die
optimale papier slyk lading en sellulase dosis kan 'n minimum etanol konsentrasie
van 47.36 g l-1 (84,69% van die teoretiese maksimum) verwag word ongeag van die
papier slyk wat gebruik word. 'n Ekonomiese evaluasie is gedoen om vas te stel of etanol produksie vanaf papier
slyk met behulp van SSF ekonomies lewensvatbaar is. Drie moontlikhede is
ondersoek. In die eerste moontlikheid is die inkomste bereken vanaf etanol verkope
gekoppel aan die basiese brandstofprys, terwyl in die tweede en derde moontlikhede,
LPG by die papier meul vervang is met anhidriese en 95% etanol onderskeidelik. In
al die gevalle was daar gebruik gemaak van papier slyk voer tempo’s van 15, 30 en
50 t d-1. Die produksie van etanol uit papier slyk vir verkope (moontlikheid 1) het gelei
tot hoër IRR en die NPV waardes, sowel as korter terugverdien tydperke, in
vergelyking met die vervanging van LPG by die papier meul (moontlikhede 2 en 3).
Met ʼn ensiem koste van $ 0.90 gal-1 (R 2.01 litre-1) is IRR-waardes van 11%, 22% en
30% verkry teen papier slyk voer tempo’s van 15, 30 en 50 t d-1 onderskeidelik. 'n Sensitiwiteitsanalise uitgevoer op die totale kapitale belegging en ensiem koste het
aan die lig gebring dat 'n SSF proses slegs ekonomies lewensvatbaar is op 'n papier slyk voer tempo van 50 t d-1 ongeag van die variasie in die kapitale belegging. Vir die
SSF proses om ekonomies lewensvatbaar te wees, moet die ensiem kostes laer
wees as $ 0.70 gal-1 (R 1.56 liter-1) en $ 1.20 gal-1 (R 2.68 liter-1) vir papier slyk voer
tempo’s van onderskeidelik 30 en 50 t d-1. Die SSF proses was op 'n papier slyk voer
tempo van 15 t d-1 nie ekonomies lewensvatbaar nie, selfs teen 'n ensiem koste van
nul.
'n Monte Carlo-simulasie het getoon dat die SSF proses ekonomies lewensvatbaar is
met 'n papier slyk voer tempo van 50 t d-1 omdat 'n gemiddelde IRR-waarde van 32%
verkry is met 'n waarskynlikheid van 26% om 'n IRR-waarde laer as 25% te verkry.
Die SSF proses teen papier slyk voer tempo’s van 30 en 15 t d-1 is nie ekonomies
lewensvatbaar nie omdat waarskynlikhede van 70% en 95% onderskeidelik verkry is
om IRR-waardes laer as 25% te kry. Daar kan van die studie afgelei word dat papier slyk 'n uitstekende grondstof is vir die
produksie van etanol mits 'n papier slyk voer tempo van meer as 50 t d-1 bereik kan
word. Die produksie van etanol vanaf papier slyk het die bykomende voordeel dat
kweekhuis gasse (GHG) met 42.5% verminder word.
|
4 |
Modeling and Production of Bioethanol from Mixtures of Cotton Gin Waste and Recycled Paper SludgeShen, Jiacheng 03 February 2009 (has links)
In this study, the hydrolytic kinetics of mixtures of cotton gin waste (CGW) and recycled paper sludge (RPS) at various initial enzyme concentrations of Spezyme AO3117 and Novozymes NS50052 was investigated. The experiments showed that the concentrations of reducing sugars and the conversions of the mixtures increased with increasing initial enzyme concentration. The reducing sugar concentration and conversion of the mixture of 75% CGW and 25% RPS were higher than those of the mixture of 80% CGW and 20% RPS. The conversion of the former could reach 73.8% after a 72-hour hydrolysis at the initial enzyme loading of 17.4 Filter Paper Unit (FPU)/g substrate. A three-parameter kinetic model with convergent property based on enzyme deactivation and its analytical expression were derived. Using nonlinear regression, the parameters of the model were determined from the experimental data of hydrolytic kinetics of the mixtures. Based on this kinetic model of hydrolysis, two profit rate models, representing two kinds of operating modes with and without substrate recycling, were developed. Using the profit rate models, the optimal enzyme loading and hydrolytic time could be predicted for the maximum profit rate in ethanol production according to the costs of enzyme and operation, enzyme loading, and ethanol market price. Simulated results from the models based on the experimental data of hydrolysis of the mixture of 75% CGW and 25% RPS showed that use of a high substrate concentration and an operating mode with feedstock recycle could greatly increase the profit rate of ethanol production. The results also demonstrated that the hydrolysis at a low enzyme loading was economically required for systematic optimization of ethanol production. The development of profit rate model points out a way to optimize a monotonic function with variables, such as enzyme loading and hydrolytic time for the maximum profit rate.
The study also investigated the ethanol production from the steam-exploded mixture of 75 wt% cotton gin waste and 25 wt% recycled paper sludge at various influencing factors, such as enzyme concentration, substrate concentration, and severity factor, by a novel operating mode: semi-simultaneous saccharification and fermentation (SSSF) consisting of a pre-hydrolysis and a simultaneous saccharification and fermentation (SSF). Four cases were studied: 24-hour pre-hydrolysis + 48-hour SSF (SSSF 24), 12-hour pre-hydrolysis + 60-hour SSF (SSSF 12), 72-hour SSF, and 48-hour hydrolysis + 12-hour fermentation (SHF). SSSF 24 produced higher ethanol concentration, yield, and productivity than the other operating modes. The higher temperature of steam explosion favored of ethanol production, but the higher initial enzyme concentration could not increase the final ethanol concentration though the hydrolytic rate of the substrate was increased. A mathematical model of SSSF, which consisted of an enzymatic hydrolysis model and a SSF model including four ordinary differential equations that describe the changes of cellobiose, glucose, microorganism, and ethanol concentrations with respect to residence time, was developed, and was used to simulate the data for the four components in the SSSF processes of ethanol production from the mixture. The model parameters were determined by a MATLAB program based on the batch experimental data of the SSSF. The analysis to the reaction rates of cellobiose, glucose, cell, and ethanol using the model and the parameters from the experiments showed that the conversion of cellulose to cellobiose was a rate-controlling step in the SSSF process of ethanol production from cellulose. / Ph. D.
|
5 |
"Green" and innovative chemical modifications of cellulose fibers / Modifications chimiques "Green" et innovantes de fibres de celluloseMangiante, Gino 05 April 2013 (has links)
Ce projet de recherche mené en collaboration avec le CTP (Centre Technique du papier) a eu comme objectif de mettre en place une stratégie de greffage de polymères sur des fibres de cellulose via « Chimie Click » dans l’eau et dans des conditions douces et respectueuses de l’environnement afin de conférer de nouvelles propriétés mécaniques aux papiers résultants. La première étape a été d’élaborer une fonctionnalisation alcyne des fibres dans des conditions douces – dans l’eau ou dans un mélange eau/isopropanol – permettant à la fois une fonctionnalisation conséquente tout en préservant la cristallinité de la cellulose, la structure fibre et les propriétés mécaniques. Différentes méthodes de microscopie ont été utilisées pour mieux comprendre l’impact de la fonctionnalisation sur les propriétés mécaniques. Afin d’améliorer les propriétés mécaniques du papier, le greffage sur les fibres de polyéthers d’alkyle fonctionnalisés azoture a été réalisé dans l’eau par cycloaddition de Huisgen d’azoture-alcyne catalysée par le cuivre (II) (CuAAC). Plusieurs polymères de natures différentes (poly(éthylène glycol) et poly[(éthylène glycol)-stat-(propylène glycol)]), de différentes masses molaires et fonctionnalités (mono- ou difonctionnels) ont été liés aux fibres de cellulose. L’ajout de chaînes de poly(éthylène glycol) s’est avéré avoir un effet lubrifiant entraînant une légère diminution de l’indice de traction mais une augmentation importante de la flexibilité du papier. De plus, le greffage de polymères difonctionnels a démontré des propriétés originales de résistance à l’eau sans changer la nature hydrophile des fibres de cellulose. Enfin, le couplage Thiol-Yne a permis de fixer de petites molécules hydrosolubles fonctionnalisées thiol sur des fibres modifiées alcyne en s’affranchissant du cuivre nécessaire à la réalisation de la réaction de CuAAC. / This research project, in collaboration with CTP (Centre Technique du Papier), aimed at developing chemical pathway in water to graft polymers on cellulose fibers via “Click Chemistry” in eco-friendly and non-degrading conditions conferring new mechanical properties upon the resulting paper sheets. A first step was to develop a “green” alkyne derivatization method in mild conditions – through pure water or water/isopropanol mixture – allowing for a substantial alkyne functionalization without jeopardizing the cellulose crystallinity, the fiber structure, and maintaining good mechanical properties of the cellulose fibers and resulting paper sheets. To better understand how the functionalization impacts the mechanical properties, several microscopy methods were employed. Then, aiming at improving mechanical properties of the resulting paper, grafting of azidefunctionalized polyoxyalkylenes on alkyne-modified fibers was achieved via Copper(II)-Catalyzed Alkyne-Azide Cycloaddition (CuAAC) in pure water. Water soluble polymers of different nature (poly(ethylene glycol) or poly[(ethylene glycol)-stat-(propylene glycol)]), with different molar mass and functionality (one or two azide groups per macromolecular chain) were successfully attached on cellulose fibers. Grafting of PEG chains involved a slight decrease of the tensile index but a drastic increase of the flexibility of the paper sheet. Interestingly, fibers grafted with difunctional polymers demonstrated an original water resistance maintaining the hydrophilic nature of fibers. Finally, Thiol-Yne reaction was successfully carried out to attach small water soluble thiol-bearing reagents on alkyne-functionalized fibers in water as a metal-free alternative to CuAAC reaction.
|
Page generated in 0.0384 seconds