• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Guaranteed Verification of Finite Element Solutions of Heat Conduction

Wang, Delin 2011 May 1900 (has links)
This dissertation addresses the accuracy of a-posteriori error estimators for finite element solutions of problems with high orthotropy especially for cases where rather coarse meshes are used, which are often encountered in engineering computations. We present sample computations which indicate lack of robustness of all standard residual estimators with respect to high orthotropy. The investigation shows that the main culprit behind the lack of robustness of residual estimators is the coarseness of the finite element meshes relative to the thickness of the boundary and interface layers in the solution. With the introduction of an elliptic reconstruction procedure, a new error estimator based on the solution of the elliptic reconstruction problem is invented to estimate the exact error measured in space-time C-norm for both semi-discrete and fully discrete finite element solutions to linear parabolic problem. For a fully discrete solution, a temporal error estimator is also introduced to evaluate the discretization error in the temporal field. In the meantime, the implicit Neumann subdomain residual estimator for elliptic equations, which involves the solution of the local residual problem, is combined with the elliptic reconstruction procedure to carry out a posteriori error estimation for the linear parabolic problem. Numerical examples are presented to illustrate the superconvergence properties in the elliptic reconstruction and the performance of the bounds based on the space-time C-norm. The results show that in the case of L^2 norm for smooth solution there is no superconvergence in elliptic reconstruction for linear element, and for singular solution the superconvergence does not exist for element of any order while in the case of energy norm the superconvergence always exists in elliptic reconstruction. The research also shows that the performance of the bounds based on space-time C-norm is robust, and in the case of fully discrete finite element solution the bounds for the temporal error are sharp.
2

Contrôle optimal de quelques phénomènes de diffusion en domaines pollués / Pointwise optimal control for some diffusion phenomena in polluted area

Mahoui, Sihem 01 July 2018 (has links)
Dans ce travail, on s'intéresse à l'analyse mathématique et au contrôle optimal pour des problèmes de diffusion relevant de certains domaines comme l'écologie ou l'environnement et comportant des termes de pollution inconnus en général. De plus, on souhaite agir sur le système en un seul point du domaine considéré pour des raisons de coût. La modélisation de ces problèmes se traduit généralement par un système de type parabolique avec donnée manquante (initiale ou aux limites) représentant la pollution, et où l'on introduit une fonction de contrôle de ce système. La méthode suivie pour résoudre ces problèmes est celle du contrôle à moindres regrets développée par J.-L. Lions et bien adaptée aux problèmes à données manquantes.Plus précisément, on est concerné par des problèmes de type parabolique qui décrivent la diffusion d'un fluide (eau) contaminé dans un domaine (une lagune ou un estuaire) par une pollution ayant son origine sur une partie du bord. De plus, on considère que la fonction source (le contrôle) est localisée en un point, c'est ce qu'on appelle le contrôle ponctuel. On cherche alors le (ou les) contrôle(s) qui peuvent améliorer la situation au lieu de la laisser à l'abandon (sans contrôle).Les solutions ne sont pas des fonctions régulières et ne peuvent être considérées qu'au sens faible. Deux méthodes sont utilisées: la première est la méthode de transposition de Lions-Magenes, détaillée au chapitre 3 de la thèse, et la deuxième méthode consiste à régulariser la masse de Dirac (le support du contrôle est un point) présentée au chapitre4. Pour les deux méthodes, on montre l'existence d'une solution faible et on établit un système d'optimalité singulier (SOS) du contrôle ponctuel à moindres regrets.Un dernier chapitre est consacré aux schémas numériques associés au problème de contrôle ponctuel à moindres regrets, où l'on obtient des estimations d'erreur par la méthode des éléments finis. / In this thesis, we are interested in mathematical analysis and optimal control of diffusion problems where there are pollution terms. In addition, we want to act on the system in a single point of the domain for cost reasons. The systems being studied are parabolic with missing (initial or boundary) data representing pollution, where we introduce a control function. The method of low-regret control of J.-L. Lions, used here for the first time to the pointwise control, seems to be well suited. We then look for the control which can improve the situation instead of doing nothing (no control).Solutions are not regular functions and can only be considered in the weak sense. Two methods are used here: the first one is the method of transposition of Lions-Magenes, detailed in Chapter 3 of the thesis, and the second method consists in regularizing the Dirac mass, presented in chapter 4. Each one of the two methods offers a new point of view. In particular, the functional spaces where the existence of a solution is obtained are different. For both methods, however, a singular optimality system is established for the low-regret pointwise control.A final chapter is devoted to the numerical schemes associated to the low-regret pointwise optimal control, where we obtain error estimates using finite elements method (FEM).
3

Volumes finis et solutions renormalisées, applications à des systèmes couplés. / Finite volumes and renormalized solutions : applications to coupled systems

Leclavier, Sarah 12 December 2017 (has links)
On s’intéresse dans cette thèse à montrer que la solution approchée, par la méthode des volumes finis, converge vers la solution renormalisée de problèmes elliptiques ou paraboliques à donnée L1. Dans la première partie nous étudions une équation de convection-diffusion ellliptique à donnée L1. En adaptant la stratégie développée pour les solutions renormaliséesà la méthode des volumes finis, nous montrons que la solution approchée converge vers l’unique solution renormalisée.Dans la deuxième partie nous nous intéressons à un problème parabolique nonlinéaire à donnée L1. En utilisant une version discrète de résultats de compacité classiques, nous montrons que les résultats obtenues dans le cas elliptique restentvrais dans le cas parabolique. Dans la troisième partie nous montrons des résultats similaires pour une équationparabolique doublement non-linéaire à donnée L1. Le caractère doublement nonlinéaire de l’équation crée des difficultés supplémentaires par rapport à la partie précédente, notamment car la règle de dérivation en chaîne ne s’applique pas dansle cas discret. Enfin, dans la quatrième partie, nous utilisons les résultats établis précédemment pour étudier un système de type thermoviscoélasticité. Nous montrons que la solution approchée, obtenue par un schéma éléments finis-volumes finis, converge vers une solution faible-renormalisée du système. / In this thesis we are interested in proving that the approximate solution, obtained by the finite volume method, converges to the unique renormalized solution of elliptic and parabolic equations with L1 data. In the first part we study an elliptic convection-diffusion equation with L1 data. Mixing the strategy developed for renormalized solution and the finite volume method,we prove that the approximate solution converges to the unique renormalized solution. In the second part we investigate a nonlinear parabolic equation with L1 data. Using a discrete version of classical compactness results, we show that the results obtaines previously in the elliptic case hold true in the parabolic case. In the third part we prove similar results for a doubly nonlinear parabolic equation with L1 data. The doubly nonlinear character of the equation makes new difficulties with respect to the previous part, especially since the chain rule formula does not apply in the discrete case. Finaly, in the fourth part we use the results established previously to investigate a system of thermoviscoelasticity kind. We show that the approximate solution,obtaines by finite element-finite volume scheme, converges to a weak-renormalized solution of the system.
4

On a Family of Variational Time Discretization Methods

Becher, Simon 09 September 2022 (has links)
We consider a family of variational time discretizations that generalizes discontinuous Galerkin (dG) and continuous Galerkin-Petrov (cGP) methods. In addition to variational conditions the methods also contain collocation conditions in the time mesh points. The single family members are characterized by two parameters that represent the local polynomial ansatz order and the number of non-variational conditions, which is also related to the global temporal regularity of the numerical solution. Moreover, with respect to Dahlquist’s stability problem the variational time discretization (VTD) methods either share their stability properties with the dG or the cGP method and, hence, are at least A-stable. With this thesis, we present the first comprehensive theoretical study of the family of VTD methods in the context of non-stiff and stiff initial value problems as well as, in combination with a finite element method for spatial approximation, in the context of parabolic problems. Here, we mainly focus on the error analysis for the discretizations. More concrete, for initial value problems the pointwise error is bounded, while for parabolic problems we rather derive error estimates in various typical integral-based (semi-)norms. Furthermore, we show superconvergence results in the time mesh points. In addition, some important concepts and key properties of the VTD methods are discussed and often exploited in the error analysis. These include, in particular, the associated quadrature formulas, a beneficial postprocessing, the idea of cascadic interpolation, connections between the different VTD schemes, and connections to other classes of methods (collocation methods, Runge-Kutta-like methods). Numerical experiments for simple academic test examples are used to highlight various properties of the methods and to verify the optimality of the proven convergence orders.:List of Symbols and Abbreviations Introduction I Variational Time Discretization Methods for Initial Value Problems 1 Formulation, Analysis for Non-Stiff Systems, and Further Properties 1.1 Formulation of the methods 1.1.1 Global formulation 1.1.2 Another formulation 1.2 Existence, uniqueness, and error estimates 1.2.1 Unique solvability 1.2.2 Pointwise error estimates 1.2.3 Superconvergence in time mesh points 1.2.4 Numerical results 1.3 Associated quadrature formulas and their advantages 1.3.1 Special quadrature formulas 1.3.2 Postprocessing 1.3.3 Connections to collocation methods 1.3.4 Shortcut to error estimates 1.3.5 Numerical results 1.4 Results for affine linear problems 1.4.1 A slight modification of the method 1.4.2 Postprocessing for the modified method 1.4.3 Interpolation cascade 1.4.4 Derivatives of solutions 1.4.5 Numerical results 2 Error Analysis for Stiff Systems 2.1 Runge-Kutta-like discretization framework 2.1.1 Connection between collocation and Runge-Kutta methods and its extension 2.1.2 A Runge-Kutta-like scheme 2.1.3 Existence and uniqueness 2.1.4 Stability properties 2.2 VTD methods as Runge-Kutta-like discretizations 2.2.1 Block structure of A VTD 2.2.2 Eigenvalue structure of A VTD 2.2.3 Solvability and stability 2.3 (Stiff) Error analysis 2.3.1 Recursion scheme for the global error 2.3.2 Error estimates 2.3.3 Numerical results II Variational Time Discretization Methods for Parabolic Problems 3 Introduction to Parabolic Problems 3.1 Regularity of solutions 3.2 Semi-discretization in space 3.2.1 Reformulation as ode system 3.2.2 Differentiability with respect to time 3.2.3 Error estimates for the semi-discrete approximation 3.3 Full discretization in space and time 3.3.1 Formulation of the methods 3.3.2 Reformulation and solvability 4 Error Analysis for VTD Methods 4.1 Error estimates for the l th derivative 4.1.1 Projection operators 4.1.2 Global L2-error in the H-norm 4.1.3 Global L2-error in the V-norm 4.1.4 Global (locally weighted) L2-error of the time derivative in the H-norm 4.1.5 Pointwise error in the H-norm 4.1.6 Supercloseness and its consequences 4.2 Error estimates in the time (mesh) points 4.2.1 Exploiting the collocation conditions 4.2.2 What about superconvergence!? 4.2.3 Satisfactory order convergence avoiding superconvergence 4.3 Final error estimate 4.4 Numerical results Summary and Outlook Appendix A Miscellaneous Results A.1 Discrete Gronwall inequality A.2 Something about Jacobi-polynomials B Abstract Projection Operators for Banach Space-Valued Functions B.1 Abstract definition and commutation properties B.2 Projection error estimates B.3 Literature references on basics of Banach space-valued functions C Operators for Interpolation and Projection in Time C.1 Interpolation operators C.2 Projection operators C.3 Some commutation properties C.4 Some stability results D Norm Equivalences for Hilbert Space-Valued Polynomials D.1 Norm equivalence used for the cGP-like case D.2 Norm equivalence used for final error estimate Bibliography
5

Etudes mathématiques et numériques des problèmes paraboliques avec des conditions aux limites / Mathematical and numerical studies of parabolic problems with boundary conditions

Karimou Gazibo, Mohamed 06 December 2013 (has links)
Cette thèse est centrée autour de l’étude théorique et de l’analyse numérique des équations paraboliques non linéaires avec divers conditions aux limites. La première partie est consacrée aux équations paraboliques dégénérées mêlant des phénomènes non-linéaires de diffusion et de transport. Nous définissons des notions de solutions entropiques adaptées pour chacune des conditions aux limites (flux nul, Robin, Dirichlet). La difficulté principale dans l’étude de ces problèmes est due au manque de régularité du flux pariétal pour traiter les termes de bords. Ceci pose un problème pour la preuve d’unicité. Pour y remédier, nous tirons profit du fait que ces résultats de régularités sur le bord sont plus faciles à obtenir pour le problème stationnaire et particulièrement en dimension un d’espace. Ainsi par la méthode de comparaison "fort-faible" nous arrivons à déduire l’unicité avec le choix d’une fonction test non symétrique et en utilisant la théorie des semi-groupes non linéaires.L’existence de solution se démontre en deux étapes, combinant la méthode de régularisation parabolique et les approximations de Galerkin. Nous développons ensuite une approche directe en construisant des solutions approchées par un schéma de volumes finis implicite en temps. Dans les deux cas, on combine les estimations dans les espaces fonctionnels bien choisis avec des arguments de compacité faible ou forte et diverses astuces permettant de passer à la limite dans des termes non linéaires. Notamment, nous introduisons une nouvelle notion de solution appelée solution processus intégrale dont l’objectif, dans le cadre de notre étude, est de pallier à la difficulté de prouver la convergence vers une solution entropique d’un schéma volumes finis pour le problème de flux nul au bord.La deuxième partie de cette thèse traite d’un problème à frontière libre décrivant la propagation d’un front de combustion et l’évolution de la température dans un milieu hétérogène. Il s’agit d’un système d’équations couplées constitué de l’équation de la chaleur bidimensionnelle et d’une équation de type Hamilton-Jacobi. L’objectif de cette partie est de construire un schéma numérique pour ce problème en combinant des discrétisations du type éléments finis avec les différences finies. Ceci nous permet notamment de vérifier la convergence de la solution numérique vers une solution onde pour un temps long. Dans un premier temps, nous nous intéressons à l’étude d’un problème unidimensionnel. Très vite,nous nous heurtons à un problème de stabilité du schéma. Cela est dû au problème de prise en compte de la condition de Neumann au bord. Par une technique de changement d’inconnue et d’approximation nous remédions à ce problème. Ensuite, nous adaptons cette technique pour la résolution du problème bidimensionnel. A l’aide d’un changement de variables, nous obtenons un domaine fixe facile pour la discrétisation. La monotonie du schéma obtenu est prouvée sous une hypothèse supplémentaire de propagation monotone qui exige que la frontière libre se déplace dans les directions d’un cône prescrit à l’avance. / This thesis focuses on the theoretical study and numerical analysis of parabolic equations with boundary conditions.The first part is devoted to degenerate parabolic equation which combines features of a hyperbolic conser-vation law with those of a porous medium equation. We define suitable notions of entropy solutions foreach of the boundary conditions (zero-flux, Robin, Dirichlet). The main difficulty in these studies residesin the formulation of the adequate notion of entropy solution and in the proof of uniqueness. There isa technical difficulty due to the lack of regularity required to treat the boundaries terms. We take ad-vantage of the fact that boundary regularity results are easier to obtain for the stationary problem, inparticular in one space dimension. Thus, using strong-weak uniqueness approach we get the uniquenesswith the choice of a non-symmetric test function and using the nonlinear semigroup theory. The exis-tence of solution is proved in two steps, combining the method of parabolic regularization and Galerkinapproximations. Next, we develop a direct approach to construct approximate solutions by an implicitfinite volume scheme. In both cases, the estimates in the appropriately chosen functional spaces are com-bined with arguments of weak or strong compactness and various tricks to pass to the limit in nonlinearterms. In the appendix, we propose a result of existence of strong trace of a solution for the degenerateparabolic problem. In another appendix of independent interest, we introduce a new concept of solutioncalled integral process solution. We exploit it to overcome the difficulty of proving the convergence ofour finite volume scheme to an entropy solution for the zero-flux boundary problem.The second part of this thesis deals with a free boundary problem describing the propagation of a com-bustion front and the evolution of the temperature in a heterogeneous medium. So we have a coupledproblem consisting of the heat equation of bidimensional space and a Hamilton-Jacobi equation. The ob-jective is to construct a numerical scheme and to verify that the numerical solution converges to a wavesolution for a long time. Recall that an existence of wave solution for this problem was already proven inan analytical framework. At first, we focus on the study of a one-dimensional problem. Here, we face aproblem of stability of the scheme. This is due to a difficulty of taking into account the Neumann boun-dary condition. Through a technique of change of unknown, we can propose a monotone scheme. Wealso adapt this technique for solving two-dimensional problem. Using a change of variables, we obtaina fixed domain where the discretization becomes easy. The monotony of the scheme is proved under anadditional assumption of monotone propagation that requires the free boundary moves in the directionsof a cone given beforehand.

Page generated in 0.0773 seconds