• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 604
  • 268
  • 127
  • 64
  • 55
  • 21
  • 11
  • 9
  • 9
  • 7
  • 6
  • 4
  • 4
  • 4
  • 3
  • Tagged with
  • 1452
  • 232
  • 204
  • 190
  • 188
  • 142
  • 140
  • 135
  • 108
  • 101
  • 100
  • 98
  • 97
  • 95
  • 94
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Rates and dates: Evaluating rhythmicity and cyclicity in sedimentary and biomineral records

Dexter, Troy Anthony 05 June 2011 (has links)
It is important to evaluate periodic fluctuations in environment or climate recorded through time to better understand the nature of Earth's history as well as to develop ideas about what the future may hold. There exist numerous proxies by which these environmental patterns can be demonstrated and analyzed through various time scales; from sequence stratigraphic bundles of transgressive-regressive cycles that demonstrate eustatic changes in global sea level, to the geochemical composition of a skeleton that records fluctuations in ocean temperature through the life of the biomineralizing organism. This study examines some of the methods by which we can analyze environmental fluctuations recorded at different time scales. The first project examines the methods by which extrabasinal orbital forcing (i.e. Milankovitch cycles) can be tested in the rock record. In order to distinguish these patterns, computer generated carbonate rock records were simulated with the resulting outcrops tested using common methods. These simulations were built upon eustatic sea level fluctuations with periods similar to what has been demonstrated in the rock record, as well as maintaining the many factors that affect the resultant rock composition such as tectonics, subsidence, and erosion. The result demonstrated that substantially large sea level fluctuations, such as those that occur when the planet is in an icehouse condition, are necessary to produce recognizable and preservable patterns that are otherwise overwhelmed by other depositional factors. The second project examines the temporal distribution of the bivalve Semele casali from Ubatuba Bay, Brazil by using amino acid racemization (AAR) calibrated with ¹⁴C radiometric dates. This data set is one of the largest ever compiled and demonstrates that surficial shell assemblages in the area have very long residence times extending back in time 10,000 years. The area has had very little change in sea level and the AAR ratios which are highly temperature dependent could be calibrated across sites varying from 10 to 53 meters in water depth. Long time scales of dated shells provide us with an opportunity to study climate fluctuations such as El Niño southern oscillation. The third project describes a newly developed method for estimating growth rates in organisms using closely related species from similar environments statistically analyzed for error using a jackknife corrected parametric bootstrap. As geochemical analyses get more precise while using less material, data can be collected through the skeleton of a biomineralizing organism, thus revealing information about environmental shifts at scales shorter than a year. For such studies, the rate of growth of an organism has substantial effects on the interpretation of results, and such rates of growth are difficult to ascertain, particularly in fossilized specimens. This method removes the need for direct measures of growth rates and even the most conservative estimates of growth rates are useful in constraining the age ranges of geochemical intra-skeletal studies, thus elucidating the likely time period under analysis. This study assesses the methods by which periodic environmental fluctuations at greatly varying time scales can be used to evaluate our understanding of earth processes using rigorous quantitative strategies. / Ph. D.
272

Fusing Modeling and Testing to Enhance Environmental Testing Approaches

Devine, Timothy Andrew 09 July 2019 (has links)
A proper understanding of the dynamics of a mechanical system is crucial to ensure the highest levels of performance. The understanding is frequently determined through modeling and testing of components. Modeling provides a cost effective method for rapidly developing a knowledge of the system, however the model is incapable of accounting for fluctuations that occur in physical spaces. Testing, when performed properly, provides a near exact understanding of how a pat or assembly functions, however can be expensive both fiscally and temporally. Often, practitioners of the two disciplines work in parallel, never bothering to intersect with the other group. Further advancement into ways to fuse modeling and testing together is able to produce a more comprehensive understanding of dynamic systems while remaining inexpensive in terms of computation, financial cost, and time. Due to this, the goal of the presented work is to develop ways to merge the two branches to include test data in models for operational systems. This is done through a series of analytical and experimental tasks examining the boundary conditions of various systems. The first venue explored was an attempt at modeling unknown boundary conditions from an operational environment by modeling the same system in known configurations using a controlled environment, such as what is seen in a laboratory test. An analytical beam was studied under applied environmental loading with grounding stiffnesses added to simulate an operational condition and the response was attempted to be matched by a free boundaries beam with a reduced number of excitation points. Due to the properties of the inverse problem approach taken, the response between the two systems matched at control locations, however at non-control locations the responses showed a large degree of variation. From the mismatch in mechanical impedance, it is apparent that improperly representing boundary conditions can have drastic effects on the accuracy of models and recreational tests. With the progression now directed towards modeling and testing of boundary conditions, methods were explored to combine the two approaches working together in harmony. The second portion of this work focuses on modeling an unknown boundary connection using a collection of similar testable boundary conditions to parametrically interpolate to the unknown configuration. This was done by using data driven models of the known systems as the interpolating functions, with system boundary stiffness being the varied parameter. This approach yielded near identical parametric model response to the original system response in analytical systems and showed some early signs of promise for an experimental beam. After the two conducted studies, the potential for extending a parametric data driven model approach to other systems is discussed. In addition to this, improvements to the approach are discussed as well as the benefits it brings. / Master of Science / A proper understanding of the dynamics of a mechanical system in a severe environment is crucial to ensure the highest levels of performance. The understanding is frequently determined through modeling and testing of components. Modeling provides a cost-effective method for rapidly developing a knowledge of the system; however, the model is incapable of accounting for fluctuations that occur in physical spaces. Testing, when performed properly, provides a near exact understanding of how a pat or assembly functions, however, can be expensive both fiscally and temporally. Often, practitioners of the two disciplines work in parallel, never bothering to intersect with the other group and favoring one approach over the other for various reasons. Further advancement into ways to fuse modeling and testing together can produce a more comprehensive understanding of dynamic systems subject to environmental excitation while remaining inexpensive in terms of computation, financial cost, and time. Due to this, the presented work aims to develop ways to merge the two branches to include test data in models for operational systems. This is done through a series of analytical and experimental tasks examining the boundary conditions of various systems and attempting to replicate the system response using inverse approaches at first. This is then proceeded by modeling boundary stiffnesses using data-driven modeling and parametric modeling approaches. The validity and impact these methods may have are also discussed.
273

Numerical study of steel–concrete composite cellular beam using demountable shear connectors

Dai, Xianghe, Yang, Jie, Zhou, Kan, Sheehan, Therese, Lam, Dennis 28 March 2023 (has links)
Yes / Steel concrete composite beams have been increasingly used in practice due to their advantages with respect to their structural features and constructability. However, in conventional composite beam systems composite action is applied via shear connectors welded at the top flange of the down-stand steel beam and embedded in the concrete slabs, making it less favourable for the beam system to be disassembled and reused. This paper presents a numerical study of a new composite beam system consisting of a cellular steel beam, metal deck flooring and demountable shear connectors. According to the experimental study, this composite beam system made the demounting, reassembly, and member reuse possible, and did not compromise the loading capacity. In the numerical study presented in the paper, a finite element model was developed and validated against the results obtained from the previous experimental study. The parametric study further examined the effects of concrete strength, shear connector arrangements and asymmetry ratios of steel beam section to the load capacity of the composite beam system. The analysis and comparison provided a deeper insight into the behaviour of this type of shear connector. Through this numerical study, the structural merits of the composite beam system using demountable shear connectors were highlighted. Finally, the mid-span plastic moment of the composite beam was predicted using the direction method provided in SCI publications and compared with the moment–deflection relationship obtained from FE modelling. / The research leading to these results is part of a joint project of the University of Bradford, the University of Luxemburg, the Technology University of Delft, the Steel Construction Institute, Tata Steel, Lindab S. A., BmS and AEC3 Ltd. The authors gratefully acknowledge the funding received from the European Commission: Research Fund for Coal and Steel (RFCS-2015, RPJ, 710040). In addition, deep appreciation to Mr. Stephen Robinson for his work done in the laboratory.
274

Femtosecond tunable light source

Miesak, Edward J. 01 January 1999 (has links)
No description available.
275

A Wall Building

Oliver, Gabriel 29 September 2011 (has links)
This thesis investigates a constructive technique, within the materials and methods of conventional practice, which allows for a common building material such as concrete block to carry form and beauty. Furthermore, this project seeks to demonstrate the role human ingenuity, patience, attention, and perception can continue to play in architecture and construction. The project focuses on an experimental wall type consisting of regular eight inch concrete half-block masonry units, stack-bonded in elevation and subtly transformed in plan to reveal a gradual shift of the exposed faces of the units. A wall was constructed at the Building Research and Demonstration Facility to investigate one example of this wall type. / Master of Architecture
276

Spine based shape parameterisation for PDE surfaces

Ugail, Hassan 15 May 2009 (has links)
Yes / The aim of this paper is to show how the spine of a PDE surface can be generated and how it can be used to efficiently parameterise a PDE surface. For the purpose of the work presented here an approximate analytic solution form for the chosen PDE is utilised. It is shown that the spine of the PDE surface is then computed as a by-product of this analytic solution. Furthermore, it is shown that a parameterisation can be introduced on the spine enabling intuitive manipulation of PDE surfaces.
277

Manipulation of PDE surfaces using an interactively defined parameterisation

Ugail, Hassan, Bloor, M.I.G., Wilson, M.J. January 1999 (has links)
No / Manipulation of PDE surfaces using a set of interactively defined parameters is considered. The PDE method treats surface design as a boundary-value problem and ensures that surfaces can be defined using an appropriately chosen set of boundary conditions and design parameters. Here we show how the data input to the system, from a user interface such as the mouse of a computer terminal, can be efficiently used to define a set of parameters with which to manipulate the surface interactively in real time.
278

Parametric surface meshing for design optimisation using a PDE formulation

Ugail, Hassan January 2002 (has links)
Yes / The problem of parametric surface meshing for the purpose of design optimisation using finite element analysis is considered. Here the surface mesh is generated as a solution of a suitably posed boundary value problem implemented on a 2D parameter space. A robust meshing scheme is presented where an initial mesh is manipulated, with the aid of the 2D parameter space, so as to obtain a suitable surface triangulation. This meshing scheme can then be used to create suitable finite element meshes with which accurate design optimisations can be carried out.
279

Automatic shape optimisation of pharmaceutical tablets using Partial Differential Equations

Ahmat, Norhayati, Gonzalez Castro, Gabriela, Ugail, Hassan 11 October 2013 (has links)
No / Pharmaceutical tablets have been the most dominant form for drug delivery and most of them are used in the oral administration of drugs. These tablets need to be strong enough so that they can tolerate external stresses. Hence, during the design process, it is important to produce tablets with maximum mechanical strength while conserving the properties of powder form components. The mechanical properties of these tablets are assessed by measuring the tensile strength, which is commonly measured using diametrical or axial compression tests. This work describes the parametric design and optimisation of solid pharmaceutical tablets in cylindrical and spherical shapes, which are obtained using a formulation based on the use of Partial Differential Equations (PDEs) for shape design. The PDE-based formulation is capable of parameterised complex shapes using the information from some boundary curves that describe the shape. It is shown that the optimal design of pharmaceutical tablets with a particular volume and maximum strength can be obtained using an automatic design optimisation which is performed by combining the PDE method and a standard method for numerical optimisation.
280

Labyrinth Seal Preprocessor and Post-Processor Design and Parametric Study

Mehta, Rumeet Pradeep 03 June 2008 (has links)
Vibrations caused due to aerodynamic excitation may cause severe limitation to the performance of turbomachines. The force resulting from the non-uniform pressure distribution within the labyrinth cavity is identified as a major source of this excitation. In order to perform rotor dynamic evaluation of rotor-bearing-seal system, accurate prediction of this force is essential. A visual basic based front-end, for a labyrinth seal analysis program, has been designed herein. In order to accurately predict the excitation force, proper modeling of labyrinth leak path is important. Thus, the front-end developed herein incorporates a leak-path geometric diagram for visual analysis of labyrinth leak path and tooth location. Furthermore, to investigate influence of various operating conditions and gas properties on excitation force (effective cross-coupling stiffness), a parametric study is performed on both the eye seal and the balance piston labyrinth seal. / Master of Science

Page generated in 0.0707 seconds