• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 1
  • 1
  • Tagged with
  • 37
  • 37
  • 33
  • 12
  • 11
  • 11
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Intracavity terahertz optical parametric oscillators

Walsh, David A. January 2011 (has links)
This thesis describes the design and implementation of several novel, nanosecond pulsed, intracavity optical parametric oscillators for the generation of terahertz radiation. The application of the intracavity approach in the context of terahertz optical parametric oscillators has been demonstrated for the first time, and the pump wave energy required was thereby reduced by an order of magnitude. The terahertz wave was tunable from under 1THz up to 3THz with a free running linewidth of ~50GHz and pulse energies up to ~20nJ (pulses were a few nanoseconds in duration). The terahertz beam profile was of Gaussian shape and could be focussed down to 2.3 times the diffraction limited spot size (M² values of 2.3 and 6.7 in the components of the beam parallel and perpendicular to the silicon prism array output coupler respectively). Developments of this intracavity source with regard to the linewidth are also reported. Implementation of etalons in the optical (laser and OPO) cavities was shown to be a promising technique that brings the terahertz linewidth down below 1GHz (close to the transform limit of nanosecond pulses) while retaining the tuning range and beam characteristics of the free running system. Close to Fourier transform limited pulses were obtained (<100MHz linewidth) via an injection seeding technique, although with significantly increased system complexity. A deleterious effect caused by the mode beating of a multimode host laser was also discovered, in that sidebands were induced on the seeded downconverted wave. This has wider implications in the field of intracavity OPOs. Finally, quasi-phasematching techniques implementing periodically poled lithium niobate were investigated as a way to lower the downconversion threshold energy requirement (by collinear propagation of the optical waves), and also to extract the terahertz wave rapidly from the (highly absorbing in the terahertz region) lithium niobate crystal. The existence of two phasematching solutions arising from the bidirectionality of the grating vector was identified as a serious design constraint in the context of an OPO where either solution can build up from noise photons, and so prefers the solution with the lowest walkoff of the downconverted waves - possibly resulting in unextractable terahertz radiation. Quasi-phasematching with an orthogonal grating vector (with identical but opposite phasematching solutions) was demonstrated and cascaded downconversion processes observed and characterised. These cascaded processes are permitted by the collinearality of the optical waves and may allow efficiency improvements through overcoming the quantum defect limit. This research has resulted in four peer reviewed papers in respected journals, and the intracavity terahertz OPO has been licensed to a company who have commercialised the technology (M Squared Lasers, Glasgow).
22

Continuous-wave, singly-resonant optical parametric oscillators pumped internal to Nd:YVO4 lasers

Stothard, David James Mark January 2002 (has links)
The advent of new quasi phase matched materials and high spectral/spatial quality pump sources has led to a renaissance in the development of continuous-wave optical parametric oscillators for the coherent generation of broadly tunable light in the mid infrared spectral region. This thesis describes a novel technique which overcomes the threshold constraints of the singly resonant oscillator (SRO) and stability constraints of the doubly resonant oscillator (DRO) traditionally associated with these devices by placing a singly resonant optical parametric oscillator in the high circulating field found within the cavity of a laser: the intracavity optical parametric oscillator. An SRO based upon the nonlinear material periodically poled LiNb03 (PPLN) operating internal to an all solid state, 1W diode pumped Nd:YV04 mini-laser is demonstrated and characterised. This system exhibits SRO threshold at only 330mW of external diode pump power, and produced a total of 70mW of extractable idler at 1W diode pump power. Through multi-parameter tuning of the poled nonlinear material we demonstrate broad tuning of the non-resonant idler through the spectrally important range 3.1 - 4μm. Novel cavity design desensitises the system to the effects of thermal lensing in the nonlinear medium, resulting in stable spatial and mean power outputs. The short term pump field stability is characterised by intensity modulation brought about by the onset of relaxation oscillations ; a consequence of placing the SRO within the cavity of the pump laser. A comparative study of SRO's based upon PPLN and the new material periodically poled RbTi0As04 (PPRTA) pumped internal to a high power fibre coupled diode pumped Nd:YV04 laser cavity is undertaken and presented. We see that although the nonlinearity and interaction length of the PPRTA is smaller than that of PPLN, the system based upon PPRTA outperforms or is at least comparable with that based upon PPLN in every respect with the exception of idler tuning range. We attribute this to the reduced sensitivity of this material to the effect of thermal lensing. Up to 440mW of extracted idler was produced by each system. The reduction of interferometric feedback of the pump field by the signal cavity mirror was found to eliminate the onset of relaxation oscillations in the case of PPRTA but not PPLN, due to thermal air currents dominating the triggering process in iii this system. Recently published Sellmeier equations and temperature derivatives for PPRTA are compared with the experimentally observed temperature tuning behaviour. The inclusion of an optical parametric oscillator within the cavity of the pump laser impacts significantly upon the transient dynamics of the pump laser in which it resides. We show experimental evidence of this effect and outline a strategy to minimise the effects of relaxation oscillations in the context of a simple numerical model which shall be derived. Possible future avenues of research are discussed in the context of the results and conclusions obtained over the course of this research program.
23

Tandem optical parametric oscillators using volume Bragg grating spectral control

Henriksson, Markus January 2010 (has links)
This thesis describes research on near degenerate quasi phase-matched opticalparametric oscillators (OPO) where volume Bragg gratings (VBG) are used toproduce narrow oscillation bandwidth. These OPOs are then used to pump a secondOPO to generate mid-infrared radiation. The atmospheric transmission windows in the 3.5 to 5 μm wavelength region areused for seekers on infrared homing missiles. These missiles are available to guerrillaand terrorist groups and have been used in a number of attacks on military and civilianaircraft. Laser sources at the same wavelengths are an important component incountermeasure systems for aircraft self-protection. Similar laser sources also haveapplications in laser surgery. At wavelengths longer than 4 μm crystal materials for multi-Watt level averagepower nonlinear devices is a problem. The best solution so far is to use ZnGeP2(ZGP). ZGP and the available alternatives all have a problem of near-infraredabsorption, and a mid-infrared OPO thus has to use a pump wavelength near 2 μm.This pump source can be a neodymium laser at 1.06 μm with a near degenerate OPO. Nonlinear devices for low to medium pulse energies are dominated by quasi phasematchedmaterials because of their higher effective nonlinearities and lack of walkoff.In addition they allow type I interaction where signal and idler from the OPOhave the same polarization, which has the advantage that both waves can be used topump the ZGP OPO. The drawback of this is that the near-degenerate interaction hasvery wide gain bandwidth. Efficient pumping of the second OPO demands narrowbandwidth output from the first OPO.Volume Bragg gratings that are glass materials with a periodic refractive indexmodulation have emerged as high quality narrow bandwidth reflectors. By using aVBG as one cavity mirror in an OPO the feedback bandwidth and hence the OPOoscillation bandwidth can be kept very narrow. Signal and idler bandwidths of 10 and20 GHz (FWHM) at 2122 and 2135 nm, respectively, have been demonstrated. Thisshould be compared to the several hundred nanometre bandwidth from an OPO usingdielectric mirrors. Very narrow bandwidth operation has been achieved so close todegeneracy that the signal and idler are not resolvable. The total output energy generated in the PPKTP OPO (signal and idler together)has been used to pump a ZGP OPO that produced mid-IR radiation. Tuning of thesignal from a ZGP OPO from 2.9 μm to degeneracy at 4.3 μm has been shown, with acorresponding idler wavelength tuneable up to 8 μm. The highest conversionefficiency that has been reached from 1.06 μm to the mid-IR was 12 %. This setupused a PPKTP OPO with 30 % conversion efficiency and 13 nm separation of signaland idler (2122 and 2135 nm). The pulse repetition frequency was 20 kHz and thegenerated output power in the mid-IR was 3.2 W. / QC 20100517
24

Opto-acoustic interactions in high power interferometric gravitational wave detectors

Gras, Slawomir M. January 2009 (has links)
[Truncated abstract] Advanced laser interferometer gravitational wave detectors require an extremely high optical power in order to improve the coupling between the gravitational wave signal and the optical field. This high power requirement leads to new physical phenomena arising from nonlinear interactions associated with radiation pressure. In particular, detectors with multi-kilometer-long arm cavities containing high density optical fields suffer the possibility of 3-mode opto-acoustic interactions. This involves the process where ultrasonic vibrations of the test mass cause the steady state optical modes to scatter. These 3-mode interactions induce transverse optical modes in the arm cavities, which then can provide positive feedback to the acoustic vibrations in the test masses. This may result in the exponential growth of many acoustic mode amplitudes, known as Parametric Instability (PI). This thesis describes research on 3-mode opto-acoustic interactions in advanced interferometric gravitational wave detectors through numerical investigations of these interactions for various interferometer configurations. Detailed analysis reveals the properties of opto-acoustic interactions, and their dependence on the interferometer configuration. This thesis is designed to provide a pathway towards a tool for the analysis of the parametric instabilities in the next generation interferometers. Possible techniques which could be helpful in the design of control schemes to mitigate this undesirable phenomenon are also discussed. The first predictions of parametric instability considered only single interactions involving one transverse mode and one acoustic mode in a simple optical cavity. ... In Chapter 6, I was able to make use of a new analytical model due to Strigin et al., which describes parametric instability in dual recycling interferometers. To make the solution tractable, it was necessary to consider two extreme cases. In the worst case, recycling cavities are assumed to be resonant for all transverse modes, whereas in the best cases, both recycling cavities are anti-resonant for the transverse modes. Results show that, for the worst case, parametric gain values as high as ~1000 can be expected, while in the best case the gain can be as low as ~ 3. The gain is shown to be very sensitive to the precise conditions of the interferometer, emphasising the importance of understanding the behaviour of the detectors when the cavity locking deviates from ideal conditions. Chapter 7 of this thesis contains work on the observation of 3-mode interactions in an optical cavity at Gingin, which confirms the analysis presented here, and also a paper which shows how the problem of 3-mode interactions can be harnessed to create new devices called opto-acoustic parametric amplifiers. In the conclusions in Chapter 8, I discuss the next important steps in understanding parametric interactions in real interferometers – including the need for more automated codes relevant to the design requirements for recycling cavities. In particular, it is pointed out how the modal structure of power and signal recycling cavities must be understood in detail, including the Gouy phase for each transverse mode, to be able to obtain precise predictions of parametric gain. This thesis is organised as a series of papers which are published or have been submitted for publication. Such writing style fills the condition for Ph.D. thesis at the University of Western Australia.
25

Nonlinear frequency conversion in isotropic semiconductor waveguides

Moutzouris, Konstantinos January 2003 (has links)
This thesis describes an experimental investigation of optical frequency conversion in isotropic semiconductor waveguides by use of several phase-matching approaches. Efficient, type I second harmonic generation of femtosecond pulses is reported in birefringently-phase-matched GaAs/Alox waveguides pumped at 2.01 μm. Practical second harmonic average powers of up to ~ 650 μW are obtained, for an average launched pump power of ~ 5 mW. This corresponds to a waveguide conversion efficiency of ~ 20 % and a normalized conversion efficiency of greater than 1000 % W−1cm−2. Pump depletion of more than 80 % is recorded. Second harmonic generation by type I, third order quasi-phase-matching in a GaAs- AlAs superlattice waveguide is reported for fundamental wavelengths from ~1480 to 1520 nm. Quasi-phase-matching is achieved through modulation of the nonlinear coefficient χ[sub](zxy)(2), which is realised by periodically tuning the superlattice bandgap. An average output power of ~25 nW is obtained for a launched pump power of < 2.3 mW. Type I second harmonic generation by use of first order quasi-phase-matching in a GaAs/AlAs symmetric superlattice waveguide is also reported, with femtosecond fundamental pulses at 1.55 μm. A periodic spatial modulation of the bulk-like second- order susceptibility χ[sub](zxy)(2) is realized using quantum well intermixing by As+ ion implantation. A practical second harmonic average power of ~1.5 μW is detected, for a coupled pump power of ~11 mW. Second harmonic generation through modal-phase-matching in GaAs/AlGaAs semiconductor waveguides is reported. Using femtosecond pulses, both type I and type II second harmonic conversion is demonstrated for fundamental wavelengths near 1.55 μm. An average second harmonic power of ~10.3 μW is collected at the waveguide output for a coupled pump power of < 20 mW. For a complete characterisation, the optical loss is measured in these nonlinear GaAs- based waveguides over the spectral range 1.3-2.1 μm in the infrared, by deploying a femtosecond scattering technique. Typical losses of ~5-10 dB/cm are measured for the best of the waveguides, while a systematic intensity and wavelength dependent study revealed the contribution of Rayleigh scattering and two photon absorption in the overall transmission loss.
26

Nonlinear response in engineered optical materials

Strömqvist, Gustav January 2012 (has links)
Material and structure engineering are increasingly employed in active optical media,in this context defined as media capable of providing laser or/and optical parametric gain. For laser materials, the main aim of the engineering is to tailor the absorption and emission cross sections in order to optimise the laser performance. At the same time, the engineering also results in a collateral modification of the material’s nonlinear response. In the first part of this work, the nonlinear index of refraction is characterised for two crystallographic forms of laser-ion doped and undoped double-tungstate crystals. These laser crystals have broad gain bandwidths, in particular when doped with Yb3+. As shown in this work, the crystals also have large Kerr nonlinearities, where the values vary significantly for different chemical compositions of the crystals. The combination of a broad gain bandwidthand a high Kerr nonlinearity makes the laser-ion doped double tungstates excellent candidates to employ for the generation of ultrashort laser pulses by Kerr-lens modelocking. The second part of the work relates to the applications of engineered second-order nonlinear media, which here in particular are periodically-poled KTiOPO4 crystals. Periodic structure engineering of second-order nonlinear crystals on a submicrometre scale opens up for the realisation of novel nonlinear devices. By the use of quasi-phase matching in these structures, it is possible to efficiently downconvert a pump wave into two counterpropagating parametric waves, which leads to a device called a mirrorless optical parametric oscillator. The nonlinear response in these engineered submicrometre structures is such that the parametric wave that propagates in the opposite direction of the pump automatically has a narrow bandwidth, whereas the parametric wave that propagates with the pump essentially is a frequency-shifted replica of the pump wave. The unusual spectral properties andthe tunabilities of mirrorless optical parametric oscillators are investigated. / QC 20120330
27

Nanosecond tandem optical parametric oscillators for mid-infrared generation

Henriksson, Markus January 2007 (has links)
<p>This thesis discusses a new scheme for generating radiation in the mid infrared spectral region, especially the 3.5-5 µm range. The scheme uses established Nd<sup>3+</sup>-lasers at 1.06 µm and down conversion in nonlinear optical crystals. The down conversion is made by two optical parametric oscillators (OPO) in series. The second OPO is a classical OPO using a zink germanium phosphide (ZGP) crystal. ZGP is the best nonlinear material available for the 4-8 µm spectral range, but it is absorbing below 2 µm. The new development presented in this thesis is the OPO used to convert the 1.06 µm laser radiation to a suitable OPO pump near 2 µm.</p><p>The OPO uses a type I quasi phase-matched crystal, which accesses high nonlinearities and avoids walk-off. The problem with type I OPOs close to degeneracy is the broad bandwidth of the generated radiation, which reduces the efficiency of a second OPO. This has been solved with a spectrally selective cavity using a volume Bragg grating output coupler. Unlike other bandwidth limiting schemes this introduces no intracavity losses and thus efficient OPO operation is achievable.</p><p>Narrow linewidth (~0.5 nm) OPO operation has been achieved with periodically poled LiNbO<sub>3</sub> (PPLN) and periodically poled KTiOPO4 (PPKTP) while locking the signal wavelength at 2008 nm and simultaneously generating an idler at 2264 nm. A high average power PPLN OPO with 36 % conversion efficiency and 47 % slope efficiency is reported. Operation very close to degeneracy at 2128 nm with the narrowband signal and idler peaks separated by 0.6 nm was demonstrated in a PPKTP OPO. Both the signal at 2008 nm and the combined signal and idler around 2128 nm from the PPKTP OPOs have been used to show efficient pumping of a ZGP OPO. The maximum conversion efficiency from 1 µm to the mid-IR demonstrated is 7 % with a slope efficiency of 10 %. This is not quite as high as what has been presented by other authors, but the experiments reported here have not shown the optimum efficiency of the new scheme. Relatively simple improvements are expected to give a significant increase in conversion efficiency.</p>
28

Nanosecond tandem optical parametric oscillators for mid-infrared generation

Henriksson, Markus January 2007 (has links)
This thesis discusses a new scheme for generating radiation in the mid infrared spectral region, especially the 3.5-5 µm range. The scheme uses established Nd3+-lasers at 1.06 µm and down conversion in nonlinear optical crystals. The down conversion is made by two optical parametric oscillators (OPO) in series. The second OPO is a classical OPO using a zink germanium phosphide (ZGP) crystal. ZGP is the best nonlinear material available for the 4-8 µm spectral range, but it is absorbing below 2 µm. The new development presented in this thesis is the OPO used to convert the 1.06 µm laser radiation to a suitable OPO pump near 2 µm. The OPO uses a type I quasi phase-matched crystal, which accesses high nonlinearities and avoids walk-off. The problem with type I OPOs close to degeneracy is the broad bandwidth of the generated radiation, which reduces the efficiency of a second OPO. This has been solved with a spectrally selective cavity using a volume Bragg grating output coupler. Unlike other bandwidth limiting schemes this introduces no intracavity losses and thus efficient OPO operation is achievable. Narrow linewidth (~0.5 nm) OPO operation has been achieved with periodically poled LiNbO3 (PPLN) and periodically poled KTiOPO4 (PPKTP) while locking the signal wavelength at 2008 nm and simultaneously generating an idler at 2264 nm. A high average power PPLN OPO with 36 % conversion efficiency and 47 % slope efficiency is reported. Operation very close to degeneracy at 2128 nm with the narrowband signal and idler peaks separated by 0.6 nm was demonstrated in a PPKTP OPO. Both the signal at 2008 nm and the combined signal and idler around 2128 nm from the PPKTP OPOs have been used to show efficient pumping of a ZGP OPO. The maximum conversion efficiency from 1 µm to the mid-IR demonstrated is 7 % with a slope efficiency of 10 %. This is not quite as high as what has been presented by other authors, but the experiments reported here have not shown the optimum efficiency of the new scheme. Relatively simple improvements are expected to give a significant increase in conversion efficiency. / QC 20101108
29

Control and measurement of ultrafast pulses for pump/probe-based metrology

Harper, Matthew R. January 2007 (has links)
In this thesis the control of ultrafast (10⁻¹³ s) optical pulses used for metrological applications has been investigated. Two different measurement set-ups have been considered, both based around the `pump-probe' technique, where an optical pulse is divided into two parts, one to `pump' or excite a physical system of interest, the other to `probe' or measure the outcome. In both cases the measurement uses electro-optic sampling (EOS), where an electric field is measured by detecting changes in the optical probe pulse polarisation after interaction with the field. In the first study, a method for wavelength metrology in the terahertz (THz) region has been demonstrated by producing an optical pulse shaper and genetic algorithm to control pump pulses and so indirectly influence the THz spectra they generate. In the second study an OPO (optical parametric oscillator) has been developed to provide ultrafast optical pulses for the generation of < 100 fs electrical pulses for metrology using quantum interference control (QUIC). QUIC electrical signals have been demonstrated successfully by charge accumulation measurements and the QUIC electrical pulse temporally measured using EOS, though the low signal levels due to power restrictions mean the QUIC electrical pulse is unsuitable for metrology at this time. Finally, a portable optical pulse measurement device based around frequency-resolved optical gating (FROG) has been designed, built and tested. This has been shown to be capable of retrieving amplitude and phase information in both the temporal and spectral domains for optical pulses as short as 20 fs duration. The ability to characterise shaped pulses also has been demonstrated successfully, with the requirements for full automation identified.
30

Nanosecond optical parametric oscillators and amplifiers based on periodically poled KTiOPO4

Hellström, Jonas January 2001 (has links)
Optical parametric oscillators (OPOs) and optical parametricamplifiers (OPAs) constitute a class of optical frequencyconverting devices that have many possible applications, e.g.in range finding, molecular spectroscopy and medicine. They canconvert the frequency of the incident pump field with highefficiency, and generate two waves at new frequencies that willbe continuously tuneable over a wide spectral range. Virtuallyany wavelengths within the transparency region of the nonlinearmaterial can be generated if the material can bequasi-phasematched (QPM). In addition, QPM gives thepossibility to utilise the largest nonlinear tensor element ofthe material and allows walk-off free interaction between thewaves. The aims of this thesis have been to investigate thepossibility to use QPM KTiOPO4crystals as nonlinear material in nanosecond OPOsand OPAs operating at room-temperature, and to explore theadvantages and shortcomings of these devices. The technique ofelectric field poling has been employed to implement the QPMstructure in flux grown KTiOPO4(KTP). The main conclusion is that periodically poled KTP (PPKTP)is a suitable material to use in nanosecond OPOs and OPAs. Thematerial properties that foremost make KTP into an attractivenonlinear material are: The large value of the nonlinearcoefficient d33, the high resistance to optically inducedbreakdown, the low susceptibility to grey-track formation, theinsensitivity to the photorefractive effect, the widetransparency and the low coercive field. The thesis shows that it is possible to pole large volumesof KTP with a high quality of the QPM structure. Highlyefficient nanosecond OPOs have been constructed during thisproject. Maximum conversion efficiencies have reached 45 % inthe case of a singly resonant OPO (SRO) built around a 3 mmthick PPKTP crystal. Total pulse energies for both the signal(1.72 µm) and the idler (2.8 µm) of up to 18 mJ wasreached and an average output power of 2 W was obtained forthis sample. However, up to 24 W was produced in a doublyresonant OPO operating close to degeneracy. The efficiencyreached 48 % for that case. Truly continuous and very widespectral tuning has also been demonstrated, as well as a narrowbandwidth OPO operating on one single longitudinal mode. <b>Keywords:</b>optical parametric oscillators, opticalparametric amplifiers, quasi-phasematching, KTiOPO4, nonlinear optics, frequency conversion, periodicelectric field poling, ferroelectrics, high-order secondharmonic generation, electro-optic effect.

Page generated in 0.1219 seconds