• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 2
  • 2
  • Tagged with
  • 12
  • 12
  • 8
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Compact Dynamical Foliations

Carrasco Correa, Pablo Daniel 09 June 2011 (has links)
According to the work of Dennis Sullivan, there exists a smooth flow on the 5-sphere all of whose orbits are periodic although there is no uniform bound on their periods. The question addressed in this thesis is whether such an example can occur in the partially hyperbolic context. That is, does there exist a partially hyperbolic diffeomorphism of a compact manifold such that all the leaves of its center foliation are compact although there is no uniform bound for their volumes. We will show that the answer to the previous question under the very mild hypothesis of dynamical coherence is no. The thesis is organized as follows. In the first chapter we give the necessary background and results in partially hyperbolic dynamics needed for the rest of the work, studying in particular the geometry of the center foliation. Chapter two is devoted to a general discussion of compact foliations. We give proof or sketches of all the relevant results used. Chapter three is the core of the thesis, where we establish the non existence of Sullivan's type of examples in the partially hyperbolic domain, and generalize to diffeomorphisms whose center foliation has arbitrary dimension. The last chapter is devoted to applications of the results of chapter three, where in particular it is proved that if the center foliation of a dynamically coherent partially hyperbolic diffeomorphism is compact and without holonomy, then it is plaque expansive.
2

Compact Dynamical Foliations

Carrasco Correa, Pablo Daniel 09 June 2011 (has links)
According to the work of Dennis Sullivan, there exists a smooth flow on the 5-sphere all of whose orbits are periodic although there is no uniform bound on their periods. The question addressed in this thesis is whether such an example can occur in the partially hyperbolic context. That is, does there exist a partially hyperbolic diffeomorphism of a compact manifold such that all the leaves of its center foliation are compact although there is no uniform bound for their volumes. We will show that the answer to the previous question under the very mild hypothesis of dynamical coherence is no. The thesis is organized as follows. In the first chapter we give the necessary background and results in partially hyperbolic dynamics needed for the rest of the work, studying in particular the geometry of the center foliation. Chapter two is devoted to a general discussion of compact foliations. We give proof or sketches of all the relevant results used. Chapter three is the core of the thesis, where we establish the non existence of Sullivan's type of examples in the partially hyperbolic domain, and generalize to diffeomorphisms whose center foliation has arbitrary dimension. The last chapter is devoted to applications of the results of chapter three, where in particular it is proved that if the center foliation of a dynamically coherent partially hyperbolic diffeomorphism is compact and without holonomy, then it is plaque expansive.
3

Medidas de máxima entropia para difeomorfismos parcialmente hiperbólicos com folheação central compacta em T3 / Maximal entropy measures for diffeomorphisms with compact center foliation on T3

Rocha, Joás Elias dos Santos 02 March 2018 (has links)
Este trabalho trata das medidas de máxima entropia para certos difeomorfismos em nilvariedades. Considere um difeomorfismo parcialmente hiperbólico f definido em T3, dinamicamente coerente com folheação central compacta. Suponha ainda que a aplicação induzida por f no espaço das folhas centrais é um homeomorfismo de Anosov transitivo em T2. Mostramos que o conjunto das medidas ergódicas hiperbólicas de máxima entropia é enumerável. Usando o princípio de invariância, mostramos que se o primeiro retorno de f à alguma folha periódica tem número de rotação irracional, então, f tem no máximo duas medidas ergódicas de máxima entropia e ter apenas uma medida de máxima entropia equivale a ser extensão de rotação. Se a aplicação de primeiro retorno à alguma folha central periódica é Morse-Smale, então existe um su-toro periódico, ou temos uma cota superior para o número de medidas ergódicas de máxima entropia que depende do número de atratores da dinâmica nessa folha. Além disso, estudamos a topologia da bacia das medidas ergódicas de máxima entropia para uma outra classe de difeomorfismos especiais que são genéricos no espaço dos difeomorfismos absolutamente parcialmente hiperbólicos e denotada por SPH1(M). / This work is about maximal entropy measures for certain diffeomorphisms on nilmanifolds. Consider a partially hyperbolic diffeomorphism f on T3 , C2 , dinamically coherent with compact center foliation which is a circle bundle. Assume that the map induced by f on the space of center leaves is a transitive Anosov homeomorphism. We show that the set of hyperbolic ergodic maximal entropy measures of f is countable. Using the invariance principle, we show that if the first return map to some periodic leaf has irrational rotation number then f has at most two ergodic maximal entropy measures and, in this case, if f has only one maximal entropy measure then f is a rotation extension. If the first return map to some periodic leaf is Morse-Smale then either there exists some periodic su-torus or an upper bound for the number of ergodic maximal entropy measure depending on the number of the attractors of the dynamics in this leaf. Moreover, we study the topology of basin of ergodic maximal entropy measures of another set of special diffeomorphisms that are generic in the space of absolutely partially hyperbolic systems and denoted by SPH1(M).
4

Rigidez e semi-rigidez dos expoentes de Lyapunov em dimensão mais alta e folheações patológicas / Rigidity and semi rigidity of Lyapunov exponents i n higher dimension and pathological foliations

Costa, José Santana Campos 24 April 2017 (has links)
Neste trabalho nós estudamos os expoentes de Lyapunov de aplicações f : Td → Td homotópicas a uma aplicação Anosov linear e a continuidade absoluta de folheações. Nós mostramos para algumas classes de homotopia de aplicações que a soma dos expoentes de Lyapunov está limitado pela soma dos expoentes de Lyapunov da aplicação Anosov linear. Além disso, admitindo uma propriedade conhecida como densidade uniformemente limitada (UBD) nas folheações, mostramos uma igualdade entre a soma dos expoentes de Lyapunov de f e do Anosov linear. Também construímos um conjunto C1 aberto de difeomorfismos parcialmente hiperbólicos do toro T4, preservando volume, com folheação central bidimensional não compacta e não absolutamente contínua. Ainda construímos um exemplo parcialmente hiperbólico com folhas centrais bidimensionais, não compactas onde a desintegração do volume ao longo da folheação central não é nem Lebesgue nem atômica. / In this work we study the Lyapunov exponents of maps f : Td → Td homotopic to a linear Anosov map. We proof for some homotopic classes of maps which the sum of Lyapunov exponents is bounded by the sum of the Lyapunov exponents of the linear Anosov map. Moreover, by assuming a property known as uniformly bounded density (UBD) in the foliations, we show an equality between the sum of the Lyapunov exponents of f and the linear Anosov. We also construct an C1 open set of volume preserving partially hyperbolic diffeomorphisms with non compact two dimensional center foliation and non absolutely continuous. We still build an example of partially hyperbolic diffeomorphism with non compact bidimensional center leaves where the disintegration of volume along the center foliation is neither Lebesgue nor atomic.
5

Medidas de máxima entropia para difeomorfismos parcialmente hiperbólicos com folheação central compacta em T3 / Maximal entropy measures for diffeomorphisms with compact center foliation on T3

Joás Elias dos Santos Rocha 02 March 2018 (has links)
Este trabalho trata das medidas de máxima entropia para certos difeomorfismos em nilvariedades. Considere um difeomorfismo parcialmente hiperbólico f definido em T3, dinamicamente coerente com folheação central compacta. Suponha ainda que a aplicação induzida por f no espaço das folhas centrais é um homeomorfismo de Anosov transitivo em T2. Mostramos que o conjunto das medidas ergódicas hiperbólicas de máxima entropia é enumerável. Usando o princípio de invariância, mostramos que se o primeiro retorno de f à alguma folha periódica tem número de rotação irracional, então, f tem no máximo duas medidas ergódicas de máxima entropia e ter apenas uma medida de máxima entropia equivale a ser extensão de rotação. Se a aplicação de primeiro retorno à alguma folha central periódica é Morse-Smale, então existe um su-toro periódico, ou temos uma cota superior para o número de medidas ergódicas de máxima entropia que depende do número de atratores da dinâmica nessa folha. Além disso, estudamos a topologia da bacia das medidas ergódicas de máxima entropia para uma outra classe de difeomorfismos especiais que são genéricos no espaço dos difeomorfismos absolutamente parcialmente hiperbólicos e denotada por SPH1(M). / This work is about maximal entropy measures for certain diffeomorphisms on nilmanifolds. Consider a partially hyperbolic diffeomorphism f on T3 , C2 , dinamically coherent with compact center foliation which is a circle bundle. Assume that the map induced by f on the space of center leaves is a transitive Anosov homeomorphism. We show that the set of hyperbolic ergodic maximal entropy measures of f is countable. Using the invariance principle, we show that if the first return map to some periodic leaf has irrational rotation number then f has at most two ergodic maximal entropy measures and, in this case, if f has only one maximal entropy measure then f is a rotation extension. If the first return map to some periodic leaf is Morse-Smale then either there exists some periodic su-torus or an upper bound for the number of ergodic maximal entropy measure depending on the number of the attractors of the dynamics in this leaf. Moreover, we study the topology of basin of ergodic maximal entropy measures of another set of special diffeomorphisms that are generic in the space of absolutely partially hyperbolic systems and denoted by SPH1(M).
6

Rigidez e semi-rigidez dos expoentes de Lyapunov em dimensão mais alta e folheações patológicas / Rigidity and semi rigidity of Lyapunov exponents i n higher dimension and pathological foliations

José Santana Campos Costa 24 April 2017 (has links)
Neste trabalho nós estudamos os expoentes de Lyapunov de aplicações f : Td → Td homotópicas a uma aplicação Anosov linear e a continuidade absoluta de folheações. Nós mostramos para algumas classes de homotopia de aplicações que a soma dos expoentes de Lyapunov está limitado pela soma dos expoentes de Lyapunov da aplicação Anosov linear. Além disso, admitindo uma propriedade conhecida como densidade uniformemente limitada (UBD) nas folheações, mostramos uma igualdade entre a soma dos expoentes de Lyapunov de f e do Anosov linear. Também construímos um conjunto C1 aberto de difeomorfismos parcialmente hiperbólicos do toro T4, preservando volume, com folheação central bidimensional não compacta e não absolutamente contínua. Ainda construímos um exemplo parcialmente hiperbólico com folhas centrais bidimensionais, não compactas onde a desintegração do volume ao longo da folheação central não é nem Lebesgue nem atômica. / In this work we study the Lyapunov exponents of maps f : Td → Td homotopic to a linear Anosov map. We proof for some homotopic classes of maps which the sum of Lyapunov exponents is bounded by the sum of the Lyapunov exponents of the linear Anosov map. Moreover, by assuming a property known as uniformly bounded density (UBD) in the foliations, we show an equality between the sum of the Lyapunov exponents of f and the linear Anosov. We also construct an C1 open set of volume preserving partially hyperbolic diffeomorphisms with non compact two dimensional center foliation and non absolutely continuous. We still build an example of partially hyperbolic diffeomorphism with non compact bidimensional center leaves where the disintegration of volume along the center foliation is neither Lebesgue nor atomic.
7

Avanços em dinâmica parcialmente hiperbólica e entropia para sistema iterado de funções / Advances in partially hyperbolic dynamics and entropy for iterated function systems

Micena, Fernando Pereira 15 February 2011 (has links)
Neste trabalho estudamos relações entre expoente de Lyapunov e continuidade absoluta da folheação central para difeomorfismos parcialmente hiperbólicos conservativos de \'T POT. 3\'. Sobre tal tema, provamos que tipicamente (\'C POT. 1\' aberto e \'C POT. 2\' denso) os difeomorfismos parcialmente hiperbólicos, conservativos de classe \'C POT. 2\' , do toro \'T POT. 3\', apresentam folheação central não absolutamente contínua. Desta maneira, respondemos positivamente uma pergunta proposta em [20]. Também neste trabalho, estudamos entropia topológica para Sistema Iterado de Funções. Neste contexto, damos uma nova demonstração para uma conjectura proposta em [14] e provada primeiramente em [15]. Apresentamos um método geométrico que nos permite calcular entropia para transformações de \'S POT. 1\', como em [15]. Além de disso o método apresentado se verifica para casos mais gerais, como por exemplo: transformações não comutativas / In this work we study relations between Lyapunov exponents, absolute continuity of center foliation for conservative partially hyperbolic diffeomorphisms of \'T POT. 3\'. About this theme, (on a \'C POT. 1\' open and \'C POT. 2\'dense set) of conservative partially hyperbolic \'C POT. 2\' diffeomorphisms of the 3-torus presents non absolutely continuous center foliation. So, we answer positively a question proposed in [20]. Also in this work, we study topological entropy for Iterated Functions Systems. In this setting, we give a proof for a conjecture proposed in [14] and firstly proved in [15]. We present a geometrical method that allows us to calcule the entropy for transformations of \'S POT. 1\', like in [15]. Furthermore this method holds for more general cases, for example: non commutative transformations
8

Equilibrium states and their local product structure for partially hyperbolic diffeomorphisms. / Estados de equilíbrio e sua estrutura de produto local para difeomorfismos parcialmente hiperbólicos.

Jorge Luis Crisostomo Parejas 26 September 2016 (has links)
We address the problem of existence and uniqueness (or finiteness) of ergodic equilibrium states for a natural class of partially hyperbolic diffeomorphisms homotopic to Anosov. We propose to study the disintegration of equilibrium states along the central foliation as a tool to develop the theory of equilibrium states for partially hyperbolic dynamics. For a large class of low variational potentials we obtain existence and uniqueness of the equilibrium state and we also obtain a dichotomy between finiteness of ergodic equilibrium states and hyperbolicity of such measures. We also prove that the measure of maximal entropy for accessible partially hyperbolic diffeomorphisms of 3-manifold having compact center leaves can be written locally as the product of three measures defined on the local stable, central and unstable foliations provided that such measure is unique. We verify that the local product structure does not hold when the number of measures of maximal entropy is larger than one. / Abordamos o problema de existência e unicidade (ou finitude) dos estados de equilíbrio ergódicos para uma classe natural de difeomorfismos parcialmente hiperbólicos homotópicos a um Anosov. Propomos estudar a desintegração dos estados de equilíbrio ao longo da folheação central como uma ferramenta para desenvolver a teoria de estados de equilíbrio para sistemas parcialmente hiperbólicos. Para uma classe de potenciais com variação pequena obtemos existência e unicidade de estados de equilíbrio e também obtemos uma dicotomia entre finitude dos estados de equilíbrio ergódicos e hiperbolicidade de tais medidas. Obtemos também que as medidas de máxima entropia para difeomorfismos parcialmente hiperbólicos acessíveis definidos numa 3-variedade tendo folhas centrais compactas podem ser escritas localmente como o produto de três medidas definidas nas folheações stável, central e instável locais sempre que tal medida é única. Verificamos que a estrutura de produto local não é valida quando o número de medidas de máxima entropia é maior que um.
9

Equilibrium states and their local product structure for partially hyperbolic diffeomorphisms. / Estados de equilíbrio e sua estrutura de produto local para difeomorfismos parcialmente hiperbólicos.

Parejas, Jorge Luis Crisostomo 26 September 2016 (has links)
We address the problem of existence and uniqueness (or finiteness) of ergodic equilibrium states for a natural class of partially hyperbolic diffeomorphisms homotopic to Anosov. We propose to study the disintegration of equilibrium states along the central foliation as a tool to develop the theory of equilibrium states for partially hyperbolic dynamics. For a large class of low variational potentials we obtain existence and uniqueness of the equilibrium state and we also obtain a dichotomy between finiteness of ergodic equilibrium states and hyperbolicity of such measures. We also prove that the measure of maximal entropy for accessible partially hyperbolic diffeomorphisms of 3-manifold having compact center leaves can be written locally as the product of three measures defined on the local stable, central and unstable foliations provided that such measure is unique. We verify that the local product structure does not hold when the number of measures of maximal entropy is larger than one. / Abordamos o problema de existência e unicidade (ou finitude) dos estados de equilíbrio ergódicos para uma classe natural de difeomorfismos parcialmente hiperbólicos homotópicos a um Anosov. Propomos estudar a desintegração dos estados de equilíbrio ao longo da folheação central como uma ferramenta para desenvolver a teoria de estados de equilíbrio para sistemas parcialmente hiperbólicos. Para uma classe de potenciais com variação pequena obtemos existência e unicidade de estados de equilíbrio e também obtemos uma dicotomia entre finitude dos estados de equilíbrio ergódicos e hiperbolicidade de tais medidas. Obtemos também que as medidas de máxima entropia para difeomorfismos parcialmente hiperbólicos acessíveis definidos numa 3-variedade tendo folhas centrais compactas podem ser escritas localmente como o produto de três medidas definidas nas folheações stável, central e instável locais sempre que tal medida é única. Verificamos que a estrutura de produto local não é valida quando o número de medidas de máxima entropia é maior que um.
10

Résonances de Ruelle à la limite semiclassique / Ruelle resonances in the semiclassical limit

Arnoldi, Jean-François 18 October 2012 (has links)
Depuis Ruelle, puis Rugh, Baladi, Tsujii, Liverani et d'autres, on sait que la fuite vers l'équilibre statistique dans de nombreux systèmes dynamiques chaotiques est gouvernée par le spectre de résonances de Ruelle de l'opérateur de transfert. A la suite de récents travaux de Faure, Sjöstrand et Roy, cette thèse propose une approche semiclassique de systèmes dynamiques chaotiques de type partiellement expansifs. Une partie du mémoire est consacrée aux extensions d'applications expansives vers des groupes de Lie compacts, en se reistreignant essentiellement aux extensions vers le groupe spécial unitaire SU(2). On se sert de la théorie des états cohérents pour les groupes de Lie, développée dans les années 70 par Perelomov et Gilmore, pour mettre en oeuvre les outils semiclassiques et la théorie des résonances de Helfer et Sjöstrand. On en déduira une estimation de Weyl et un gap spectral pour les résonances de Ruelle prouvant que la fuite vers l'équilibre statistique dans ces modèles est gouvernée par un opérateur de rang fini (en accord avec les résultats obtenus par Tsujii pour les semi-flots partiellement expansifs). On étend ensuite cette approche aux modèles "ouverts" pour lesquels la dynamique présente un ensemble captif de Cantor. On montrera l'existence d'un spectre discret de résonances de Ruelle et on prouve une loi de Weyl fractale, analogue classique du théorème de Lin-Guillopé-Zworski pour les résonances du laplacien hyperbolique sur les surfaces à courbure négative constante. On montre aussi un gap spectral asymptotique. On expliquera pourquoi ces modèles semblent être des objets d'étude adaptés pour approcher des questions importantes et difficiles du chaos classique ou quantique. On pense en particulier au problème de la minoration du nombre de résonances, étudié dans le contexte des applications quantiques par Nonnenmacher et Zworski. / Since the work of Ruelle, then Rugh, Baladi, Tsujii, Liverani and others, it is kown that the convergence towards statistical equilibrium in many chaotic dynamical systems is gouverned by the Ruelle spectrum of resonances of the so-called transfer operator. Following recent works from Faure, Sjöstrand and Roy, this thesis gives a semiclassical approach for partially expanding chaotic dynamical systems. The first part of the thesis is devoted to compact Lie groups extenstions of expanding maps, essentially restricting to SU(2) extensions. Using Perlomov's coherent state theory for Lie groups, we apply the semiclassical theory of resonances of Helfer and Sjöstrand. We deduce Weyl type estimations and a spectral gap for the Ruelle resonances, showing that the convergence towards equilibrium is controled by a finite rank operator (as Tsujii already showed for partially expanding semi-flows). We then extend this approach to "open" models, for which the dynamics exhibits a fractal invariant reppeler. We show the existence of a discrete spectrum of resonances and we prove a fractal Weyl law, the classical analogue of Lin-Guillopé-Zworski's theorem on resonances of non-compact hyperbolic surfaces. We also show an asymptotic spectral gap. Finally we breifly explain why these models are interseting "toy models" to explore important questions of classical and quantum chaos. In particular, we have in mind the problem of proving lower bounds on the number of resonances, studied in the context of open quantum maps by Nonnenmacher and Zworski.

Page generated in 0.1169 seconds