• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure of Partially Premixed Flames Using Detailed Chemistry Simulations

Kluzek, Celine D. 2009 August 1900 (has links)
State-of-the-art reacting-flow computations have to compromise either on the detail of chemical reactions or on the dimensionality of the solution, while experiments in flames are limited by the flow accessibility and provide at best a limited number of observables. In the present work, the partially premixed laminar flame structure is examined using a detailed-chemistry, one-dimensional simulation. The computational results are compared to unpublished single-point multiscalar measurements obtained at Sandia National Labs in 2001. The study is focused on axisymmetric laminar partially-premixed methane/air flames with varying premixture strength values of 1.8, 2.2, and 3.17. The combination of computational and experimental results is used to analyze the spatial and scalar flame structure under the overarching concept of flamelets. The computations are based on the Cantera open-source software package developed at CalTech by D. Goodwin, and incorporating the GRI 3.0 chemical kinetic mechanism utilizing 325 chemical reactions and 53 species for methane combustion. Cross-transport effects as well as an optically-thin radiation model are included in the calculations. Radiation changes the flame profiles due to its effect on temperature, and the attendant effects on a number of species. Using the detailed analysis of different reaction rates, the adiabatic and radiative nitric oxide concentrations are compared. The cross-transport effects, i.e. Soret and Dufour, were studied in detail. The Soret term has a small but important effect on the flame structure through a reduction of the hydrogen mass fraction, which changes the conserved scalar values. Based on the flamelet approach and a unique formulation of the conserved scalar, the flame thermochemistry can be analyzed and understood. A number of interesting effects on the flame thermochemistry can be discerned in both experiments and computations when the premixture strength is varied. An increase in premixing results in a counterintuitive decrease in intermediate species such as carbon monoxide and hydrogen, as well as an expected increase in nitric oxide concentrations. Good agreement is found between experiments and calculations in scalar space, while the difference in dimensionality between axisymmetric measurements and opposed jet computations makes comparison in physical space tentative.
2

Premixed and Partial Premixed Turbulent Flames at High Reynolds Number

Luca, Stefano 06 1900 (has links)
Methane/air premixed and partially premixed turbulent flames at high Reynolds number are characterized using Direct Numerical Simulations (DNS) with detailed chemistry in a spatially evolving slot Bunsen configuration. Two sets of simulations are performed. A first set of simulations with fully premixed inlet conditions is considered in order to assess the effect of turbulence on the flame. Four simulations are performed at increasing Reynolds number and up to 22400, defined based on the bulk velocity, slot width, and the reactants' properties, and 22 billion grid points, making it one of the largest simulations in turbulent combustion. The simulations feature finite rate chemistry with a 16 species mechanism. To perform these simulations, few preliminary steps were required: (i) two skeletal mechanisms were developed reducing GRI-3.0; (ii) a convergence study is performed to select the proper spatial and temporal discretization and (iii) simulations of fully developed turbulent channel flows are preformed to generate the inlet conditions of the jet. The study covers different aspects of flame-turbulence interaction. It is found that the thickness of the reaction zone is similar to that of a laminar flame, while the preheat zone has a lower mean temperature gradient, indicating flame thickening. The characteristic length scales of turbulence are investigated and the effect of the Reynolds number on these quantities is assessed. The tangential rate of strain is responsible for the production of flame surface in the mean and surface destruction is due to the curvature term. A second set of simulations with inhomogeneous inlet conditions is performed to study how partial premixing and turbulence interact with the flame and with each other. The jet Reynolds number is 5600, and a 33 species mechanism is used. The effect of the inlet fluctuations is reflected on heat release rate fluctuations, however the conditional mean is not affected. The flames show thickening of the preheat zone, and for the lowest level of mixing a slight thickening of the reaction zone is observed. The effect of partially mixed mixture on the NOx formation is analyzed and no major impact was found.
3

Flamelet/progress variable modelling and flame structure analysis of partially premixed flames

Hartl, Sandra 13 September 2017 (has links) (PDF)
This dissertation addresses the analysis of partially premixed flame configurations and the detection and characterization of their local flame regimes. First, the identification of flame regimes in experimental data is intensively discussed. Current methods for combustion regime characterization, such as the flame index, rely on 3D gradient information that is not accessible with available experimental techniques. Here, a method is proposed for reaction zone detection and characterization, which can be applied to instantaneous 1D Raman/Rayleigh line measurements of major species and temperature as well as to the results of laminar and turbulent flame simulations, without the need for 3D gradient information. Several derived flame markers, namely the mixture fraction, the heat release rate and the chemical explosive mode, are combined to detect and characterize premixed versus non-premixed reaction zones. The methodology is developed and evaluated using fully resolved simulation data from laminar flames. The fully resolved 1D simulation data are spatially filtered to account for the difference in spatial resolution between the experiment and the simulation, and experimental uncertainty is superimposed onto the filtered numerical results to produce Raman/Rayleigh equivalent data. Then, starting from just the temperature and major species, a constrained homogeneous batch reactor calculation gives an approximation of the full thermochemical state at each sample location. Finally, the chemical explosive mode and the heat release rate are calculated from this approximated state and compared to those calculated directly from the simulation data. After successful validation, the approach is applied to Raman/Rayleigh line measurements from laminar counterflow flames, a mildly turbulent lifted flame and turbulent benchmark cases. The results confirm that the reaction zones can be reliably detected and characterized using experimental data. In contrast to other approaches, the presented methodology circumvents uncertainties arising from the use of limited gradient information and offers an alternative to known reaction zone identification methods. Second, this work focuses on the flame structure of partially premixed dimethyl ether (DME) flames. DME flames form significant intermediate hydrocarbons in the reaction zone and are classified as the next more complex fuel candidate in research after methane. To simulate DME combustion processes, accurate predictions by computational combustion models are required. To evaluate such models and to identify appropriate flame regimes, numerical simulations are necessary. Therefore, fully resolved simulations of laminar dimethyl ether flames, defined by different levels of premixing, are performed. Further, the qualitative two-dimensional structures of the partially premixed DME flames are discussed and analyses are carried out at selected slices and compared to each other as well as to experimental data. Further, the flamelet/progress variable (FPV) approach is investigated to predict the partially premixed flame structures of the DME flames. In the context of the FPV approach, a rigorous analysis of the underlying manifold is carried out based on the newly developed regime identification approach and an a priori analysis. The most promising flamelet look-up table is chosen for the fully coupled tabulated chemistry simulations and the results are further compared to the fully resolved simulation data.
4

Etude du développement d’une flamme soumise à un gradient de concentration : Rôle de la stratification et des EGR / Study of the development of flame kernel submited to a concentration gradient : role of stratification and egr

Gruselle, Catherine 22 January 2014 (has links)
La combustion stratifiée, qui consiste à brûler un mélange carburant/oxydant inhomogène, et la combustion diluée, consistant à ajouter une quantité limitée de gaz brûlés, sont deux technologies utilisées dans les moteurs à piston pour réduire leur consommation. Cette thèse est dédiée à l’étude de l’allumage dans ces deux types de milieux en régimes laminaire et turbulent. Un nouveau schéma cinétique pour la combustion propane/air a été dérivé et combiné à deux approches de modélisation différentes : la chimie complexe et une approche de chimie tabulée de type FPI. Dans le cas laminaire, les deux approches de modélisation donnent des résultats similaires et un modèle simple a mis en évidence l’importance de la dynamique des gaz frais et des gaz brûlés sur le développement du noyau. Dans le cas turbulent, plusieurs techniques d’analyse ont montré la dépendance de la vitesse absolue de la flamme au champ de vitesse moyen et la décorrélation des fluctuations locales de richesse. / Stratified combustion, which consists in burning an inhomogeneous fuel/air mixture, and diluted combustion, which consists in adding a limited quantity of burnt gases, are two technologies used in internal combustion engines to reduce fuel consumption. This Ph.D is devoted to the study of ignition in these two types of combustion in laminar and turbulent regimes. A new kinetic scheme for propane/air combustion has been derived and combined to two modeling approaches: finite-rate chemistry and an FPI tabulated chemistry approach. In the laminar case, both approaches give similar results and a simplified model has highlighted the importance of fresh and burnt gases dynamics on the kernel development. In the turbulent case, several techniques of analysis have shown the dependency of absolute flame speed on the mean fluid velocity and the lack of correlation to the local equivalence ratio.
5

Flamelet/progress variable modelling and flame structure analysis of partially premixed flames

Hartl, Sandra 17 August 2017 (has links)
This dissertation addresses the analysis of partially premixed flame configurations and the detection and characterization of their local flame regimes. First, the identification of flame regimes in experimental data is intensively discussed. Current methods for combustion regime characterization, such as the flame index, rely on 3D gradient information that is not accessible with available experimental techniques. Here, a method is proposed for reaction zone detection and characterization, which can be applied to instantaneous 1D Raman/Rayleigh line measurements of major species and temperature as well as to the results of laminar and turbulent flame simulations, without the need for 3D gradient information. Several derived flame markers, namely the mixture fraction, the heat release rate and the chemical explosive mode, are combined to detect and characterize premixed versus non-premixed reaction zones. The methodology is developed and evaluated using fully resolved simulation data from laminar flames. The fully resolved 1D simulation data are spatially filtered to account for the difference in spatial resolution between the experiment and the simulation, and experimental uncertainty is superimposed onto the filtered numerical results to produce Raman/Rayleigh equivalent data. Then, starting from just the temperature and major species, a constrained homogeneous batch reactor calculation gives an approximation of the full thermochemical state at each sample location. Finally, the chemical explosive mode and the heat release rate are calculated from this approximated state and compared to those calculated directly from the simulation data. After successful validation, the approach is applied to Raman/Rayleigh line measurements from laminar counterflow flames, a mildly turbulent lifted flame and turbulent benchmark cases. The results confirm that the reaction zones can be reliably detected and characterized using experimental data. In contrast to other approaches, the presented methodology circumvents uncertainties arising from the use of limited gradient information and offers an alternative to known reaction zone identification methods. Second, this work focuses on the flame structure of partially premixed dimethyl ether (DME) flames. DME flames form significant intermediate hydrocarbons in the reaction zone and are classified as the next more complex fuel candidate in research after methane. To simulate DME combustion processes, accurate predictions by computational combustion models are required. To evaluate such models and to identify appropriate flame regimes, numerical simulations are necessary. Therefore, fully resolved simulations of laminar dimethyl ether flames, defined by different levels of premixing, are performed. Further, the qualitative two-dimensional structures of the partially premixed DME flames are discussed and analyses are carried out at selected slices and compared to each other as well as to experimental data. Further, the flamelet/progress variable (FPV) approach is investigated to predict the partially premixed flame structures of the DME flames. In the context of the FPV approach, a rigorous analysis of the underlying manifold is carried out based on the newly developed regime identification approach and an a priori analysis. The most promising flamelet look-up table is chosen for the fully coupled tabulated chemistry simulations and the results are further compared to the fully resolved simulation data.

Page generated in 0.1029 seconds