Spelling suggestions: "subject:"particle swarm"" "subject:"particle awarm""
111 |
Optimization Techniques For an Artificial Potential Fields Racing Car ControllerAbdelrasoul, Nader January 2013 (has links)
Context. Building autonomous racing car controllers is a growing field of computer science which has been receiving great attention lately. An approach named Artificial Potential Fields (APF) is used widely as a path finding and obstacle avoidance approach in robotics and vehicle motion controlling systems. The use of APF results in a collision free path, it can also be used to achieve other goals such as overtaking and maneuverability. Objectives. The aim of this thesis is to build an autonomous racing car controller that can achieve good performance in terms of speed, time, and damage level. To fulfill our aim we need to achieve optimality in the controller choices because racing requires the highest possible performance. Also, we need to build the controller using algorithms that does not result in high computational overhead. Methods. We used Particle Swarm Optimization (PSO) in combination with APF to achieve optimal car controlling. The Open Racing Car Simulator (TORCS) was used as a testbed for the proposed controller, we have conducted two experiments with different configuration each time to test the performance of our APF- PSO controller. Results. The obtained results showed that using the APF-PSO controller resulted in good performance compared to top performing controllers. Also, the results showed that the use of PSO proved to enhance the performance compared to using APF only. High performance has been proven in the solo driving and in racing competitions, with the exception of an increased level of damage, however, the level of damage was not very high and did not result in a controller shut down. Conclusions. Based on the obtained results we have concluded that the use of PSO with APF results in high performance while taking low computational cost.
|
112 |
Utilizing Swarm Intelligence Algorithms for Pathfinding in GamesKelman, Alexander January 2017 (has links)
The Ant Colony Optimization and Particle Swarm Optimization are two Swarm Intelligence algorithms often utilized for optimization. Swarm Intelligence relies on agents that possess fragmented knowledge, a concept not often utilized in games. The aim of this study is to research whether there are any benefits to using these Swarm Intelligence algorithms in comparison to standard algorithms such as A* for pathfinding in a game. Games often consist of dynamic environments with mobile agents, as such all experiments were conducted with dynamic destinations. Algorithms were measured on the length of their path and the time taken to calculate that path. The algorithms were implemented with minor modifications to allow them to better function in a grid based environment. The Ant Colony Optimization was modified in regards to how pheromone was distributed in the dynamic environment to better allow the algorithm to path towards a mobile target. Whereas the Particle Swarm Optimization was given set start positions and velocity in order to increase initial search space and modifications to increase particle diversity. The results obtained from the experimentation showcased that the Swarm Intelligence algorithms were capable of performing to great results in terms of calculation speed, they were however not able to obtain the same path optimality as A*. The algorithms' implementation can be improved but show potential to be useful in games.
|
113 |
Fast searching measurement of absolute displacement based on submicron-aperture fiber point-diffraction interferometerWang, Daodang, Wang, Zhichao, Liang, Rongguang, Kong, Ming, Zhao, Jun, Zhao, Jufeng, Mo, Linhai, Li, Wei 26 June 2017 (has links)
The submicron-aperture fiber point-diffraction interferometer (SFPDI) can be applied to realize the measurement of three-dimensional absolute displacement within large range, in which the performance of point-diffraction wavefront and numerical iterative algorithm for displacement reconstruction determines the achievable measurement accuracy, reliability and efficiency of the system. A method based on fast searching particle swarm optimization (FS-PSO) algorithm is proposed to realize the rapid measurement of three-dimensional absolute displacement. Based on the SFPDI with two submicron-aperture fiber pairs, FS-PSO method and the corresponding model of the SFPDI, the measurement accuracy, reliability and efficiency of the SFPDI system are significantly improved, making it more feasible for practical application. The effect of point-diffraction wavefront error on the measurement is analyzed. The error of point-diffraction wavefront obtained in the experiment is in the order of 1x10(-4). (the wavelength. is 532 nm), and the corresponding displacement measurement error is smaller than 0.03 mu m. Both the numerical simulation and comparison experiments have been carried out to demonstrate the accuracy and feasibility of the proposed SFPDI system, high measurement accuracy in the order of 0.1 mu m, convergence rate (similar to 90.0%) and efficiency have been realized with the proposed method, providing a feasible way to measure three-dimensional absolute displacement in the case of no guide rail.
|
114 |
Analysis of behaviours in swarm systemsErskine, Adam January 2016 (has links)
In nature animal species often exist in groups. We talk of insect swarms, flocks of birds, packs of lions, herds of wildebeest etc. These are characterised by individuals interacting by following their own rules, privy only to local information. Robotic swarms or simulations can be used explore such interactions. Mathematical formulations can be constructed that encode similar ideas and allow us to explore the emergent group behaviours. Some behaviours show characteristics reminiscent of the phenomena of criticality. A bird flock may show near instantaneous collective shifts in direction: velocity changes that appear to correlated over distances much larger individual separations. Here we examine swarm systems inspired by flocks of birds and the role played by criticality. The first system, Particle Swarm Optimisation (PSO), is shown to behave optimally when operating close to criticality. The presence of a critical point in the algorithm’s operation is shown to derive from the swarm’s properties as a random dynamical system. Empirical results demonstrate that the optimality lies on or near this point. A modified PSO algorithm is presented which uses measures of the swarm’s diversity as a feedback signal to adjust the behaviour of the swarm. This achieves a statistically balanced mixture of exploration and exploitation behaviours in the resultant swarm. The problems of stagnation and parameter tuning often encountered in PSO are automatically avoided. The second system, Swarm Chemistry, consists of heterogeneous particles combined with kinetic update rules. It is known that, depending upon the parametric configuration, numerous structures visually reminiscent of biological forms are found in this system. The parameter set discovered here results in a cell-division-like behaviour (in the sense of prokaryotic fission). Extensions to the swarm system produces a swarm that shows repeated cell division. As such, this model demonstrates a behaviour of interest to theories regarding the origin of life.
|
115 |
Development of a Novel Relative Localization SensorKohlbacher, Anton January 2017 (has links)
By enabling coordinated task execution and movement, robotic swarms can achieve efficient exploration or disaster site management. When utilizing Ultra-wideband (UWB) radio technology for ranging, the proposed relative localization sensor can be made lightweight and relatively indifferent to the ambient environment. Infrastructure dependency is eliminated by making the whole sensor fit on a swarm agent, while allowing for a certain amount of positional error. In this thesis, a novel algorithm is implemented in to constrained hardware and compared to a more traditional trilateration approach. Both algorithms utilize Particle Swarm Optimization (PSO) to be more robust towards noise and achieves similar accuracy, but the proposed algorithm can run up to ten times faster. The antenna array which forms the localization sensor weighs only 56g, and achieves around 0.5m RMSE with a 10Hz update rate. Experiments show that the accuracy can be further improved if the rotational bias observed in the UWB devices are compensated for.
|
116 |
Characterising continuous optimisation problems for particle swarm optimisation performance predictionMalan, Katherine Mary January 2014 (has links)
Real-world optimisation problems are often very complex. Population-based metaheuristics, such as evolutionary algorithms and particle swarm optimisation (PSO) algorithms, have been successful in solving many of these problems, but it is well known that they sometimes fail. Over the last few decades the focus of research in the field has been largely on the algorithmic side with relatively little attention being paid to the study of the problems. Questions such as ‘Which algorithm will most accurately solve my problem?’ or ‘Which algorithm will most quickly produce a reasonable answer to my problem?’ remain unanswered.
This thesis contributes to the understanding of optimisation problems and what makes them hard for algorithms, in particular PSO algorithms. Fitness landscape analysis techniques are developed to characterise continuous optimisation problems and it is shown that this characterisation can be used to predict PSO failure. An essential feature of this approach is that multiple problem characteristics are analysed together, moving away from the idea of a single measure of problem hardness. The resulting prediction models not only lead to a better understanding of the algorithms themselves, but also takes the field a step closer towards the goal of informed decision-making where the most appropriate algorithm is chosen to solve any new complex problem. / Thesis (PhD)--University of Pretoria, 2014. / Computer Science / unrestricted
|
117 |
Multiple sequence alignment using particle swarm optimizationZablocki, Fabien Bernard Roman 16 January 2009 (has links)
The recent advent of bioinformatics has given rise to the central and recurrent problem of optimally aligning biological sequences. Many techniques have been proposed in an attempt to solve this complex problem with varying degrees of success. This thesis investigates the application of a computational intelligence technique known as particle swarm optimization (PSO) to the multiple sequence alignment (MSA) problem. Firstly, the performance of the standard PSO (S-PSO) and its characteristics are fully analyzed. Secondly, a scalability study is conducted that aims at expanding the S-PSO’s application to complex MSAs, as well as studying the behaviour of three other kinds of PSOs on the same problems. Experimental results show that the PSO is efficient in solving the MSA problem and compares positively with well-known CLUSTAL X and T-COFFEE. / Dissertation (MSc)--University of Pretoria, 2009. / Computer Science / Unrestricted
|
118 |
Using SetPSO to determine RNA secondary structureNeethling, Charles Marais 16 February 2009 (has links)
RNA secondary structure prediction is an important field in Bioinformatics. A number of different approaches have been developed to simplify the determination of RNA molecule structures. RNA is a nucleic acid found in living organisms which fulfils a number of important roles in living cells. Knowledge of its structure is crucial in the understanding of its function. Determining RNA secondary structure computationally, rather than by physical means, has the advantage of being a quicker and cheaper method. This dissertation introduces a new Set-based Particle Swarm Optimisation algorithm, known as SetPSO for short, to optimise the structure of an RNA molecule, using an advanced thermodynamic model. Structure prediction is modelled as an energy minimisation problem. Particle swarm optimisation is a simple but effective stochastic optimisation technique developed by Kennedy and Eberhart. This simple technique was adapted to work with variable length particles which consist of a set of elements rather than a vector of real numbers. The effectiveness of this structure prediction approach was compared to that of a dynamic programming algorithm called mfold. It was found that SetPSO can be used as a combinatorial optimisation technique which can be applied to the problem of RNA secondary structure prediction. This research also included an investigation into the behaviour of the new SetPSO optimisation algorithm. Further study needs to be conducted to evaluate the performance of SetPSO on different combinatorial and set-based optimisation problems. / Dissertation (MS)--University of Pretoria, 2009. / Computer Science / unrestricted
|
119 |
Isometry Registration Among Deformable Objects, A Quantum Optimization with Genetic OperatorHadavi, Hamid January 2013 (has links)
Non-rigid shapes are generally known as objects whose three dimensional geometry may deform by internal and/or external forces. Deformable shapes are all around us, ranging from protein molecules, to natural objects such as the trees in the forest or the fruits in our gardens, and even human bodies. Two deformable shapes may be related by isometry, which means their intrinsic geometries are preserved, even though their extrinsic geometries are dissimilar. An important problem in the analysis of the deformable shapes is to identify the three-dimensional correspondence between two isometric shapes, given that the two shapes may be deviated from isometry by intrinsic distortions. A major challenge is that non-rigid shapes have large degrees of freedom on how to deform. Nevertheless, irrespective of how they are deformed, they may be aligned such that the geodesic distance between two arbitrary points on two shapes are nearly equal. Such alignment may be expressed by a permutation matrix (a matrix with binary entries) that corresponds to every paired geodesic distance in between the two shapes. The alignment involves searching the space over all possible mappings (that is all the permutations) to locate the one that minimizes the amount of deviation from isometry. A brute-force search to locate the correspondence is not computationally feasible. This thesis introduces a novel approach created to locate such correspondences, in spite of the large solution space that encompasses all possible mappings and the presence of intrinsic distortion.
In order to find correspondences between two shapes, the first step is to create a suitable descriptor to accurately describe the deformable shapes. To this end, we developed deformation-invariant metric descriptors. A descriptor constitutes pair-wise geodesic distances among arbitrary number of discrete points that represent the topology of the non-rigid shape. Our descriptor provides isometric-invariant representation of the shape irrespective of its circumstantial deformation. Two isometric-invariant descriptors, representing two candidate deformable shapes, are the input parameters to our optimization algorithm. We then proceed to locate the permutation matrix that aligns the two descriptors, that minimizes the deviation from isometry.
Once we have developed such a descriptor, we turn our attention to finding correspondences between non deformable shapes. In this study, we investigate the use of both classical and quantum particle swarm optimization (PSO) algorithms for this task. To explore the merits of variants of PSO, integer optimization involving test functions with large dimensions were performed, and the results and the analysis suggest that quantum PSO is more effective optimization method than its classical PSO counterpart. Further, a scheme is proposed to structure the solution space, composed of permutation matrices, in lexicographic ordering. The search in the solution space is accordingly simplified to integer optimization to find the integer rank of the targeted permutation matrix. Empirical results suggest that this scheme improves the scalability of quantum PSO across large solution spaces. Yet, quantum PSO's global search capability requires assistance in order to more effectively manoeuvre through the local extrema prevalent in the large solution spaces. A mutation based genetic algorithm (GA) is employed to augment the search diversity of quantum PSO when/if the swarm stagnates among the local extrema. The mutation based GA instantly disengages the optimization engine from the local extrema in order to reorient the optimization energy to the trajectories that steer to the global extrema, or the targeted permutation matrix.
Our resultant optimization algorithm combines quantum Particle Swarm Optimization (PSO) and mutation based Genetic Algorithm (GA). Empirical results show that the optimization method presented is scalable and efficient on standard hardware across different solution space sizes. The performance of the optimization method, in simulations and on various near-isometric shapes, is discussed. In all cases investigated, the method could successfully identify the correspondence among the non-rigid deformable shapes that were related by isometry.
|
120 |
Particle swarm optimization and differential evolution for multi-objective multiple machine schedulingGrobler, Jacomine 24 June 2009 (has links)
Production scheduling is one of the most important issues in the planning and operation of manufacturing systems. Customers increasingly expect to receive the right product at the right price at the right time. Various problems experienced in manufacturing, for example low machine utilization and excessive work-in-process, can be attributed directly to inadequate scheduling. In this dissertation a production scheduling algorithm is developed for Optimatix, a South African-based company specializing in supply chain optimization. To address the complex requirements of the customer, the problem was modeled as a flexible job shop scheduling problem with sequence-dependent set-up times, auxiliary resources and production down time. The algorithm development process focused on investigating the application of both particle swarm optimization (PSO) and differential evolution (DE) to production scheduling environments characterized by multiple machines and multiple objectives. Alternative problem representations, algorithm variations and multi-objective optimization strategies were evaluated to obtain an algorithm which performs well against both existing rule-based algorithms and an existing complex flexible job shop scheduling solution strategy. Finally, the generality of the priority-based algorithm was evaluated by applying it to the scheduling of production and maintenance activities at Centurion Ice Cream and Sweets. The production environment was modeled as a multi-objective uniform parallel machine shop problem with sequence-dependent set-up times and unavailability intervals. A self-adaptive modified vector evaluated DE algorithm was developed and compared to classical PSO and DE vector evaluated algorithms. Promising results were obtained with respect to the suitability of the algorithms for solving a range of multi-objective multiple machine scheduling problems. Copyright / Dissertation (MEng)--University of Pretoria, 2009. / Industrial and Systems Engineering / unrestricted
|
Page generated in 0.0598 seconds