• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 42
  • 31
  • 19
  • 11
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 396
  • 396
  • 386
  • 121
  • 115
  • 104
  • 101
  • 76
  • 73
  • 52
  • 42
  • 37
  • 35
  • 31
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

PARTICLE IMAGE VELOCIMETRY MEASUREMENTS OF THE TOTAL CAVOPULMONARY CONNECTION WITH CIRCULATORY FLOW AUGMENTATION

Chopski, Steven 22 April 2010 (has links)
This thesis project examined the interactive fluid dynamics between a blood pump and the univentricular Fontan circulation. 2-D particle image velocimetry (PIV) measurements were conducted on an idealized total cavopulmonary connection (TCPC) with an axial pump prototype in the inferior vena cava (IVC). Fluid velocity profiles were examined under various physiologic conditions for Fontan patients. The velocity profiles for all cases demonstrated the shunting of flow from the IVC toward the right pulmonary artery. A rotational component in the pump outflow was observed forcing flow to the periphery as compared to the flow profile without a pump present in the IVC. The inclusion of the pump provides a pressure rise of 3 to 9 mmHg. These results demonstrate the ability of the intravascular blood pump to support a Fontan circulation and support the continued optimization and development of the pump.
102

An Experimental Study of Formation of Circulation Patterns in Laminar Unsteady Driven Cavity Flows Using Particle Image Velocimeter (PIV) Techniques

Farkas, Jon 17 December 2011 (has links)
Abstract An experimental study is conducted to determine the velocity fields, from development to steady state, in a square enclosure due to movement of a constant velocity lid using Particle Image Velocitmetry (PIV). Experiments were conducted with water, seeded with hollow glass sphere particles 10 microns in diameter, at three different lid velocities leading to Reynolds numbers in the high laminar to transitional range. Driven Cavity Flow is a classic fluid dynamics case often used for benchmarking of computational codes. Previous work has primarily focused on improving computational codes, experimental work is lacking and focused on obtaining steady state readings. The test cavity is 1 inch (25.4mm) high by 1 inch (25.4 mm) wide leading to an aspect ratio of 1.0. The depth is taken to be 5 (127mm) inches to reduce the three dimensional effects. Readings are taken from development to steady state allowing for a full spectrum of flow characteristics. PIV technique is successful in capturing the development of driven cavity flow. Circulation is shown to increase strength with time and Reynolds number. PIV capture and processing settings are determined. Keywords: Driven Cavity Flow, Particle Image Velocimeter (PIV)
103

Experimental Analysis of the Effect of Cartilaginous Rings in Tracheobronchial Flow and Stenotic Trachea Flow

Jose Alberto Montoya Segnini (7023242) 15 August 2019 (has links)
<p>An accurate understanding of the respiratory fluid dynamics is instrumental for medical applications, such as drug delivery system and treatment of diseases. Substantial research has been done to study such flow. However, a great number of these studies have the prevailing assumption of having a smooth wall, in despite the human trachea and bronchi is sustain by a series of cartilaginous rings, which creates height differences near the wall. To study the effect of including cartilaginous rings in the respiratory flow we developed two experiments, presenting a comparison between a smooth model and a model with cartilaginous rings. First, we present an experimental observation of a simplified Weibel-based model of the human trachea and bronchi with cartilaginous rings. The experiments were carried out with a flow rate comparable with a resting state (trachea-based Reynolds number of Re<sub>D</sub> = 2650). In the second experiment, we developed a similar experiment but in a model with a tracheal stenosis (70% in the middle of the model) and no bronchi. In this case we increase the Reynolds number to Re<sub>D </sub>= 3350, still a resting breathing state condition.</p> <p>For both experiments, we used transparent models and refractive index-matching methods were used to observe the flow, particularly near the wall. The flow was seeded with tracers to perform particle image velocimetry and particle tracking velocimetry to quantify the effect the rings have on the flow near the trachea and bronchi walls. From the results, we present a previously unknown phenomenon in the cavities between the cartilaginous rings: a small recirculation is observed in the upstream side of the cavities throughout the trachea. This recirculation is due to the adverse pressure gradient created by the expansion, which traps particles within the ring cavity. In addition, we found that the cartilaginous rings induce velocity fluctuations into the flow, which enhances the near-wall momentum of the flow reducing the separation after the stenosis. Size of the recirculation is reduced by 11% and the maximum upstream velocity is reduced by 38%, resulting in a much weaker recirculation because of the rings. Also noticed a delay in the separation from the trachea to bronchi bifurcation. </p> <p>The detection of recirculation zones in the cartilage ring cavities and the perturbation sheds light on the particle deposition mechanism and helps explain results from previous studies that have observed an enhancement of particle deposition in models with cartilage rings. The results highlight the importance to include the cartilaginous rings in respiratory flow studies. Finally, we compared the results from the stenotic case with Reynolds-averaged Navier-Stokes (RANS) models (k – ε, k – ε RNG, k – ω, k – ω SST, k – ω SST LRN and 4-equation Transition SST). In the results, indicate significant discrepancies between the experimental measurements and the simulations, mainly in the area with flow separation after the contraction. Therefore, RANS algorithms should not be considered reliable for research purposes in respiratory fluid dynamics without experimental validation. </p>
104

Estudo da estrutura turbulenta em escoamentos gerados por grades oscilantes / Study of the turbulence structure in drainage caused by oscillating grids

Souza, Leonardo Barra Santana de 29 May 2002 (has links)
Este trabalho representa o início de uma série de pesquisas que visam o estudo da turbulência e de sua relação com processos de mistura e trocas gasosas entre ar e água, através de experimentos com grades oscilantes. Seu objetivo foi o projeto e a construção de um tanque de grade oscilante, equipamento que gera turbulência com intensidade controlável. Após a construção do tanque, experimentos para medições de velocidade turbulenta foram feitos, com uso de uma técnica de velocimetria a laser. Uma grade de 9x9 barras foi usada na agitação do fluido, com uma amplitude de oscilação de 3 cm, para 4 diferentes freqüências de oscilação. Adquiriu-se 9600 imagens do movimento do fluido, em 6 regiões do tanque, para a obtenção dos campos de velocidade turbulenta, calculados através do software Visiflow e de um programa computacional desenvolvido neste trabalho. Os gráficos criados a partir dos campos possibilitaram a observação do decaimento espacial da turbulência e da região de sua produção. Os campos médios de velocidade mostraram-se bem inferiores aos campos instantâneos, indicando a existência de baixo escoamento médio do fluido. As condições de isotropia e a homogeneidade espacial da turbulência são mais aproximadas à medida que se afasta da grade. A intensidade turbulenta produzida é diretamente relacionada com a freqüência de oscilação. O número de imagens para a obtenção de uma média representativa da velocidade turbulenta neste equipamento parece ser dependente da freqüência de oscilação da grade. Isto aponta para a necessidade de estabelecer corretamente as condições para os cálculos estatísticos em escoamentos turbulentos / This work presents the project and construction of a tank with an oscillating grid, equipment which provides for the experimental studies of turbulence and its relation to mixing processes and gas transfer across fluid interface. Experiments were carried out with the use of digital particle image velocimetry technique, to investigate the properties of the produced turbulence. A grid made of 9x9 square bars was used to stir the water, with a stroke of 3 cm and 4 different oscillation frequencies. A number of 9600 images were acquired, in 6 regions of the tank, for the generation of the turbulent velocity fields through the software Visiflow and a computational program developed in this work. The results showed that the current equipment, with a new concept for the grid oscillation system, can be conveniently useful for studies in this research field. Average velocity fields appeared to be considerably smaller than the instantaneous velocity fields, which leads to the existence of nearly-stationary turbulence in the water volume. Nearly-isotropic turbulence and spatial homogeneity were approximate as the measurements distanced from the grid. The turbulent intensity was directly dependent on the oscillation frequency. The spatial decay of the turbulence and the region near the grid where it is produced could also be observed. The number of images necessary for the calculus of reliable root-mean-square turbulent velocities seems to be dependent on the oscillation frequency of the grid. It results in the necessity of establishing correct statistical analysis of turbulent flows
105

High-Speed Diagnostics in a Natural Gas-Air Rotating Detonation Engine at Elevated Pressure

Christopher Lee Journell (6634439) 11 June 2019 (has links)
<div>Gas turbine engines have operated on the Brayton cycle for decades, each decade only gaining approximately one to two percent in thermal efficiency as a result of efforts</div><div>to improve engine performance. Pressure-gain combustion in place of constant-pressure combustion in a Brayton cycle could provide a drastic step-change in the thermal efficiency of these devices, leading to reductions in fuel consumption and emissions production. Rotating Detonation Engines (RDEs) have been widely researched as a viable option for pressure-gain combustion. Due to the extremely high frequencies associated with operation of an RDE, the development and application of high-speed diagnostics techniques for RDEs is necessary to further understand and</div><div>develop these devices.</div><div><br></div><div>An application of high-speed diagnostic techniques in a natural gas-air RDE at conditions relevant to land-based power generation is presented. Diagnostics included high-frequency chamber pressure measurements, chemiluminescence imaging of the annulus, and Particle Image Velocimetry (PIV) measurements at the exit plane of the RDE. Results from a case with two detonation waves rotating clockwise (aft looking forward) in the combustor annulus are presented. Detonation surface plots are created from chemiluminescence images and allow for the extraction of properties such as dominant frequency modes and wave number, speed, and direction. The chamber frequency for the case with two co-rotating waves in the chamber is found to be 3.46 kHz and corresponds to average individual wave speeds of 68% Chapman-Jouguet (CJ) velocity. Dynamic Mode Decomposition (DMD) is applied and indicates the presence of two strong detonation waves rotating clockwise and periodically intersecting with weaker, counter-rotating waves in the annulus at certain times during operation. Singular-Spectrum Analysis (SSA) is used to isolate modes corresponding to the detonation frequency in the signals of velocity components obtained from PIV, maintaining instantaneous phase information. Axial and azimuthal components of velocity are observed to remain nearly 180 degrees out of phase. Lastly, approximate angles for the trailing oblique shocks in the combustion chamber are calculated.</div>
106

Study of the undercutting of woodwind toneholes using particle image velocimetry

MacDonald, Robert January 2009 (has links)
The undercutting of toneholes has been practised for centuries with the aim of improving the tuning and playability of woodwind instruments. The influence of undercutting on tuning can be understood in terms of linear acoustic theory. Its effect on other playing characteristics is thought to lie in its reduction of local non-linear flow phenomena (boundary layer separation and the formation of jets and vortices) at the tonehole. Particle Image Velocimetry (PIV) is used to examine the oscillating airflow around a model woodwind tonehole. Velocity and vorticity information is obtained and compared for a square-edged tonehole and an undercut tonehole at a variety of sound levels. The upstream, internal edge of the tonehole is found to be the location of the most significant local non-linear flow behaviour. Undercutting is found to reduce the strength of local non-linear flow phenomena at a given sound level. Microphone measurements carried out in a reverberation chamber show that undercutting the tonehole also reduces the harmonic distortion introduced to the radiated pressure signal by the non-linear flow. Proper Orthogonal Decomposition (POD) is then applied to PIV data of oscillating flow at the end of a tube. It is used to approximately separate the acoustic field from the induced local non-linear flow phenomena. The POD results are then used to approximate the percentage of kinetic energy present in the non-linear flow. POD analysis is applied to the case of flow around the two toneholes. It shows a smaller transfer of kinetic energy to non-linear flow effects around the undercut tonehole at a given sound level. The dependence of the local non-linear flow kinetic energy on Strouhal number is considered.
107

Rapid Decompression of Dense Particle Beds

January 2019 (has links)
abstract: Rapid expansion of dense beds of fine, spherical particles subjected to rapid depressurization is studied in a vertical shock tube. As the particle bed is unloaded, a high-speed video camera captures the dramatic evolution of the particle bed structure. Pressure transducers are used to measure the dynamic pressure changes during the particle bed expansion process. Image processing, signal processing, and Particle Image Velocimetry techniques, are used to examine the relationships between particle size, initial bed height, bed expansion rate, and gas velocities. The gas-particle interface and the particle bed as a whole expand and evolve in stages. First, the bed swells nearly homogeneously for a very brief period of time (< 2ms). Shortly afterward, the interface begins to develop instabilities as it continues to rise, with particles nearest the wall rising more quickly. Meanwhile, the bed fractures into layers and then breaks down further into cellular-like structures. The rate at which the structural evolution occurs is shown to be dependent on particle size. Additionally, the rate of the overall bed expansion is shown to be dependent on particle size and initial bed height. Taller particle beds and beds composed of smaller-diameter particles are found to be associated with faster bed-expansion rates, as measured by the velocity of the gas-particle interface. However, the expansion wave travels more slowly through these same beds. It was also found that higher gas velocities above the the gas-particle interface measured \textit{via} Particle Image Velocimetry or PIV, were associated with particle beds composed of larger-diameter particles. The gas dilation between the shocktube diaphragm and the particle bed interface is more dramatic when the distance between the gas-particle interface and the diaphragm is decreased-as is the case for taller beds. To further elucidate the complexities of this multiphase compressible flow, simple OpenFOAM (Weller, 1998) simulations of the shocktube experiment were performed and compared to bed expansion rates, pressure fluctuations, and gas velocities. In all cases, the trends and relationships between bed height, particle diameter, with expansion rates, pressure fluctuations and gas velocities matched well between experiments and simulations. In most cases, the experimentally-measured bed rise rates and the simulated bed rise rates matched reasonably well in early times. The trends and overall values of the pressure fluctuations and gas velocities matched well between the experiments and simulations; shedding light on the effects each parameter has on the overall flow. / Dissertation/Thesis / Rapid expansion of bed composed of [212, 297]micron particles. / Rapid expansion of bed composed of [44, 90]micron particles. / Rapid expansion of bed composed of [150, 212]micron particles. / Doctoral Dissertation Engineering 2019
108

Flow structure and vorticity transport on a plunging wing

Eslam Panah, Azar 01 May 2014 (has links)
The structure and dynamics of the flow field created by a plunging flat plate airfoil are investigated at a chord Reynolds number of 10,000 while varying plunge amplitude and Strouhal number. Digital particle image velocimetry measurements are used to characterize the shedding patterns and the interactions between the leading and trailing edge vortex structures (LEV and TEV), resulting in the development of a wake classification system based on the nature and timing of interactions between the leading- and trailing-edge vortices. The convection speed of the LEV and its resulting interaction with the TEV is primarily dependent on reduced frequency; however, at Strouhal numbers above approximately 0.4, a significant influence of Strouhal number (or plunge amplitude) is observed in which LEV convection is retarded, and the contribution of the LEV to the wake is diminished. It is shown that this effect is caused by an enhanced interaction between the LEV and the airfoil surface, due to a significant increase in the strength of the vortices in this Strouhal number range, for all plunge amplitudes investigated. Comparison with low-Reynolds-number studies of plunging airfoil aerodynamics reveals a high degree of consistency and suggests applicability of the classification system beyond the range examined in the present work. Some important differences are also observed. The three-dimensional flow field was characterized for a plunging two-dimensional flat-plate airfoil using three-dimensional reconstructions of planar PIV data. Whereas the phase-averaged description of the flow field shows the secondary vortex penetrating the leading-edge shear layer to terminate LEV formation on the airfoil, time-resolved, instantaneous PIV measurements show a continuous and growing entrainment of secondary vorticity into the shear layer and LEV. A planar control volume analysis on the airfoil indicated that the generation of secondary vorticity produced approximately one half the circulation, in magnitude, as the leading-edge shear layer flux. A small but non-negligible vorticity source was also attributed to spanwise flow toward the end of the downstroke. Preliminary measurements of the structure and dynamics of the leading-edge vortex (LEV) are also investigated for plunging finite-aspect-ratio wings at a chord Reynolds number of 10,000 while varying aspect ratio and root boundary condition. Stereoscopic particle image velocimetry (SPIV) measurements are used to characterize LEV dynamics and interactions with the plate in multiple chordwise planes. The relationship between the vorticity field and the spanwise flow field over the wing, and the influence of root boundary conditions on these quantities has been investigated. The viscous symmetry plane is found to influence this flow field, in comparison to other studies \cite{YiRo:2010,Vi:2011b,CaWaGuVi:2012}, by influencing tilting of the LEV near the symmetry wall, and introducing a corewise root-to-tip flow near the symmetry plane. Modifications in the root boundary conditions are found to significantly affect this. LEV circulations for the different aspect ratio plates are also compared. At the bottom of the downstroke, the maximum circulation is found at the middle of the semi-span in each case. The circulation of the $sAR=2$ wing is found to significantly exceed that of the $sAR=1$ wing and, surprisingly, the maximum circulation value is found to be independent of root boundary conditions for the $sAR=2$ case and also closely matched that of the quasi-2D case. Furthermore, the 3-D flow field of a finite wing of $sAR=2$ was characterized using three-dimensional reconstructions of planar PIV data after minimizing the gap between the plunging plate and the top stationary wall. The LEV on the finite wing rapidly evolved into an arch structure centered at approximately the 50\% spanwise position, similar to previous observations by Calderon et al. \cite{CaWaGu:2010}, and Yilmaz and Rockwell \cite{YiRo:2010}. At that location, the circulation contribution due to spanwise flow was approximately half that of the shear layer flux because of the significantly greater three-dimensionality in the flow. Increased tilting at the 25\% and 75\% spanwise locations suggests increasing three-dimensionality at those locations compared to the symmetry plane of the arch (50\% spanwise location). The deviation between the LEV circulation and integrated convective vorticity fluxes at the 50\% spanwise location suggests that entrainment of secondary vorticity plays a similar role in regulating LEV circulation as in the 2D case. While the wing surface flux of vorticity could not be measured in that case, the significant difference between LEV circulation and the known integrated fluxes is comparable to that for the 2D plate, suggesting that a significant boundary flux of secondary vorticity may exist.
109

Unsteady Computational Fluid Dynamics (CFD) Validation and Uncertainty Quantification for a Confined Bank of Cylinders Using Particle Image Velocimetry (PIV)

Wilson, Brandon M. 01 May 2012 (has links)
This work made publicly available electronically on May 9, 2012.
110

On the dynamics of Rayleigh-Taylor mixing

Ramaprabhu, Praveen Kumar 30 September 2004 (has links)
The self-similar evolution of a turbulent Rayleigh-Taylor (R-T) mix is investigated through experiments and numerical simulations. The experiments consisted of velocity and density measurements using thermocouples and Particle Image Velocimetry techniques. A novel experimental technique, termed PIV-S, to simultaneously measure both velocity and density fields was developed. These measurements provided data for turbulent correlations, power spectra, and energy balance analyses. The self-similarity of the flow is demonstrated through velocity profiles that collapse when normalized by an appropriate similarity variable and power spectra that evolve in a shape-preserving form. In the self-similar regime, vertical r.m.s. velocities dominate over the horizontal r.m.s. velocities with a ratio of 2:1. This anisotropy, also observed in the velocity spectra, extends to the Taylor scales. Buoyancy forcing does not alter the structure of the density spectra, which are seen to have an inertial range with a -5/3 slope. A scaling analysis was performed to explain this behavior. Centerline velocity fluctuations drive the growth of the flow, and can hence be used to deduce the growth constant. The question of universality of this flow was addressed through 3D numerical simulations with carefully designed initial conditions. With long wavelengths present in the initial conditions, the growth constant was found to depend logarithmically on the initial amplitudes. In the opposite limit, where long wavelengths are generated purely by the nonlinear interaction of shorter wavelengths, the growth constant assumed a universal lower bound value of

Page generated in 0.044 seconds