• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 42
  • 31
  • 19
  • 11
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 396
  • 396
  • 386
  • 121
  • 115
  • 104
  • 101
  • 76
  • 73
  • 52
  • 42
  • 37
  • 35
  • 31
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Untersuchung der Radseitenraumströmung in einer Einschaufelrad-Abwasserpumpe

Bubelach, Torben January 2009 (has links)
Zugl.: Berlin, Techn. Univ., Diss., 2009
122

In vitro micro particle image velocimetry measurements in the hinge region of a bileaflet mechanical heart valve

Jun, Brian H. 08 June 2015 (has links)
A number of clinical, in vitro and computational studies have shown the potential for thromboembolic complications in bileaflet mechanical heart valves (BMHV), primarily due to the complex and unsteady flows in the valve hinges. These studies have focused on quantitative and qualitative parameters such as velocity magnitude, turbulent shear stresses, vortex formation and platelet activation to identify potential for blood damage. However, experimental characterization of the whole flow fields within the valve hinges has not yet been conducted. This information can be utilized to investigate instantaneous damage to blood elements and also to validate numerical studies focusing on the hinge’s complex fluid dynamics. The objective of this study was therefore to develop a high-resolution imaging system to characterize the flow fields and global velocity maps in a BMHV hinge. Subsequently, the present study investigated the effect of hinge gap width on flow fields in a St. Jude Medical BMHV. The results from this study suggest that the BMHV hinge design is a delicate balance between reduction of fluid shear stresses and areas of flow stasis during leakage flow, and needs to be optimized to ensure minimal thromboembolic complications. Overall, the current study demonstrates the ability of high-resolution Micro Particle Image Velocimetry to assess the fluid flow fields within the hinges of bileaflet mechanical heart valves, which can be extended to investigate micro-scale flow domains in critical regions of other cardiovascular devices to assess their blood damage potential.
123

Stability and turbulence characteristics of a spiraling vortex filament using proper orthogonal decomposition

Mula, Swathi Mahalaxmi 03 August 2015 (has links)
The stability and turbulence characteristics of a vortex filament emanating from a single-bladed rotor in hover are investigated using proper orthogonal decomposition. The rotor is operated at a tip chord Reynolds number and a tip Mach number of 218,000 and 0.22, respectively, and with a blade loading of CT /σ = 0.066. In-plane components of the velocity field (normal to the axis of the vortex filament) are captured by way of 2D particle image velocimetry with corrections for vortex wander being performed using the Γ1 method. Using the classical form of POD, the first POD mode alone is found to encompass nearly 75% of the energy for all vortex ages studied and is determined using a grid of sufficient resolution as to avoid numerical integration errors in the decomposition. The findings reveal an equal balance between the axisymmetric and helical modes during vortex roll-up which immediately transitions to helical mode dominance at all other vortex ages. This helical mode is one of the modes of the elliptic instability. While the snapshot POD is shown to reveal similar features of the first few energetic modes, the classical POD is employed here owing to the easier interpretation of the Fourier-azimuthal modes. The spatial eigenfunctions of the first few Fourier-azimuthal modes associated with the most energetic POD mode are shown to be sensitive to the choice of the wander correction technique used. Higher Fourier-azimuthal modes are observed in the outer portions of the vortex and appeared not to be affected by the choice of the wander correction technique used. / text
124

Experimental Validation Data for CFD of Steady and Transient Mixed Convection on a Vertical Flat Plate

Lance, Blake 01 January 2015 (has links)
Simulations are becoming increasingly popular in science and engineering. One type of simulation is Computation Fluid Dynamics (CFD) that is used when closed forms solutions are impractical. The field of Verification & Validation emerged from the need to assess simulation accuracy as they often contain approximations and calibrations. Validation involves the comparison of experimental data with simulation outputs and is the focus of this work. Errors in simulation predictions may be assessed in this way. Validation requires highly-detailed data and description to accompany these data, and uncertainties are very important. The purpose of this work is to provide highly complete validation data to assess the accuracy of CFD simulations. This aim is fundamentally different from the typical discovery experiments common in research. The measurement of these physics was not necessarily original but performed with modern, high fidelity methods. Data were tabulated through an online database for direct use in Reynolds-Averaged Navier Stokes simulations. Detailed instrumentation and documentation were used to make the data more useful for validation. This work fills the validation data gap for steady and transient mixed convection. The physics in this study included mixed convection on a vertical flat plate. Mixed convection is a condition where both forced and natural convection influence fluid momentum and heat transfer phenomena. Flow was forced over a vertical flat plate in a facility built for validation experiments. Thermal and velocity data were acquired for steady and transient flow conditions. The steady case included both buoyancy-aided and buoyancy-opposed mixed convection while the transient case was for buoyancy-opposed flow. The transient was a ramp-down flow transient, and results were ensemble-averaged for improved statistics. Uncertainty quantification was performed on all results with bias and random sources. An independent method of measuring heat flux was devised to assess the accuracy of commercial heat flux sensors used in the heated wall. It measured the convective heat flux by the temperature gradient in air very near the plate surface. Its accuracy was assessed by error estimations and uncertainty quantification.
125

Experimental investigation of coherent structures generated by active and passive separation control in turbulent backward-facing step flow

Ma, Xingyu 21 July 2015 (has links)
No description available.
126

On the dynamics of Rayleigh-Taylor mixing

Ramaprabhu, Praveen Kumar 30 September 2004 (has links)
The self-similar evolution of a turbulent Rayleigh-Taylor (R-T) mix is investigated through experiments and numerical simulations. The experiments consisted of velocity and density measurements using thermocouples and Particle Image Velocimetry techniques. A novel experimental technique, termed PIV-S, to simultaneously measure both velocity and density fields was developed. These measurements provided data for turbulent correlations, power spectra, and energy balance analyses. The self-similarity of the flow is demonstrated through velocity profiles that collapse when normalized by an appropriate similarity variable and power spectra that evolve in a shape-preserving form. In the self-similar regime, vertical r.m.s. velocities dominate over the horizontal r.m.s. velocities with a ratio of 2:1. This anisotropy, also observed in the velocity spectra, extends to the Taylor scales. Buoyancy forcing does not alter the structure of the density spectra, which are seen to have an inertial range with a -5/3 slope. A scaling analysis was performed to explain this behavior. Centerline velocity fluctuations drive the growth of the flow, and can hence be used to deduce the growth constant. The question of universality of this flow was addressed through 3D numerical simulations with carefully designed initial conditions. With long wavelengths present in the initial conditions, the growth constant was found to depend logarithmically on the initial amplitudes. In the opposite limit, where long wavelengths are generated purely by the nonlinear interaction of shorter wavelengths, the growth constant assumed a universal lower bound value of
127

Stereoscopic PIV In Steady Flow Through a Bileaflet Mechanical Heart Valve

Hutchison, Christopher 14 July 2009 (has links)
The tendency of aortic bileaflet mechanical heart valves (BiMHVs) to promote thrombosis has been well documented in the literature. The relationship of thrombosis to valve fluid dynamics has prompted numerous studies of aortic BiMHV flow. In this study, steady flow was investigated downstream of a model Carbomedics No. 25 BiMHV in an axisymmetric aortic sinus using stereoscopic particle image velocimetry (SPIV). The Reynolds number based on inlet diameter was 7600, and the measurement plane was perpendicular to the leaflet axes at the centerline of the aortic sinus. The typical formation of three jets was observed: the upper and lower lateral orifice jets, and the central jet. Flow separation from the valve ring was seen, and large scale vortices were identified in both the upper and lower sinus regions. An asymmetry in the reverse flow was found, and possible causes were discussed. All three jets were seen to decay similarly to free rectangular jets, with zero decay initially, followed by a 'linear' decay rate in which Umax^2~X. The central jet was also seen to be self similar in the linear decay region. Analysis of the out-of-plane velocity yielded two alternate explanations of streamwise vortex (i.e. Wx) structure, with either a four-cell or an eight-cell streamwise vortex structure being present in the mean velocity field. Organization of large scale three dimensional flow structures was thus apparent. Calculation of in-plane Reynolds stresses showed that values were highest in the outer shear layers of the lateral orifice jets. Elevated Reynolds shear stress values were also found in the leaflet wake regions, and the shear layers of the central jet.
128

Stereoscopic PIV In Steady Flow Through a Bileaflet Mechanical Heart Valve

Hutchison, Christopher 14 July 2009 (has links)
The tendency of aortic bileaflet mechanical heart valves (BiMHVs) to promote thrombosis has been well documented in the literature. The relationship of thrombosis to valve fluid dynamics has prompted numerous studies of aortic BiMHV flow. In this study, steady flow was investigated downstream of a model Carbomedics No. 25 BiMHV in an axisymmetric aortic sinus using stereoscopic particle image velocimetry (SPIV). The Reynolds number based on inlet diameter was 7600, and the measurement plane was perpendicular to the leaflet axes at the centerline of the aortic sinus. The typical formation of three jets was observed: the upper and lower lateral orifice jets, and the central jet. Flow separation from the valve ring was seen, and large scale vortices were identified in both the upper and lower sinus regions. An asymmetry in the reverse flow was found, and possible causes were discussed. All three jets were seen to decay similarly to free rectangular jets, with zero decay initially, followed by a 'linear' decay rate in which Umax^2~X. The central jet was also seen to be self similar in the linear decay region. Analysis of the out-of-plane velocity yielded two alternate explanations of streamwise vortex (i.e. Wx) structure, with either a four-cell or an eight-cell streamwise vortex structure being present in the mean velocity field. Organization of large scale three dimensional flow structures was thus apparent. Calculation of in-plane Reynolds stresses showed that values were highest in the outer shear layers of the lateral orifice jets. Elevated Reynolds shear stress values were also found in the leaflet wake regions, and the shear layers of the central jet.
129

Design and development of a two dimensional scanning molecular tagging velocimetry (MTV) system

Ahmad, Farhan Unknown Date
No description available.
130

Investigation of Effervescent Atomization Using Laser-Based Measurement Techniques

Ghaemi, Sina Unknown Date
No description available.

Page generated in 0.0458 seconds