• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 42
  • 31
  • 19
  • 11
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 396
  • 396
  • 386
  • 121
  • 115
  • 104
  • 101
  • 76
  • 73
  • 52
  • 42
  • 37
  • 35
  • 31
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Design and optimization of efficient microfluidic platforms for particle manipulation and cell stimulation in systems biology

Paul, Alison Marie 25 August 2011 (has links)
The overall goal of this research was to develop an efficient microfluidic system to study signal transduction in stimulation dynamics. This research applied reactive transport fundamentals in concert with biological systems knowledge to completely understand diffusion of soluble signals, fluid and particle flow properties, and dynamics of cellular responses. First, a device capable of parallel multi-time-point cell stimulation and lysis on-chip was developed in collaboration. Second, to understand flow of cells through complex 3-D flow schemes, a Single-field Three-dimensional Epifluorescence Particle (STEP) imaging technique was developed. Using the STEP imaging technique, we were able to determine particle distributions and track individual particles in complex flow geometries. Third, during the design of the stimulation device it was observed that the cells do not distribute across the channel in the same way as the fluids. Based on the observation that geometry and particle size were most influential factors on particle distribution, it was hypothesized that our earlier observation and all observed phenomena in our experimental range were due to the volume exclusion of particles of finite size near the wall of the complex flow geometry. Overall, this work contributed to the realization of microfluidic platforms as powerful tools for probing areas of biology and medicine that are difficult with existing technology. The high-throughput format enabled simple and fast generation of large sets of quantitative data, with consistent sample handling. We demonstrated the necessary first steps to designing efficient unit operations on cells in microfluidic devices. The model can be used for informed design of unit operations in many applications in the future.
112

The transient motion of a solid sphere between parallel walls

Brooke, Warren Thomas 20 October 2005
This thesis describes an investigation of the velocity field in a fluid around a solid sphere undergoing transient motion parallel to, and midway between, two plane walls. Particle Image Velocimetry (PIV) was used to measure the velocity at many discrete locations in a plane that was perpendicular to the walls and included the centre of the sphere. The transient motion was achieved by releasing the sphere from rest and allowing it to accelerate to terminal velocity. <p>To avoid complex wake structures, the terminal Reynolds number was kept below 200. Using solutions of glycerol and water, two different fluids were tested. The first fluid was 100%wt glycerol, giving a terminal Reynolds number of 0.6 which represents creeping flow. The second solution was 80%wt glycerol yielding a terminal Reynolds number of 72. For each of these fluids, three wall spacings were examined giving wall spacing to sphere diameter ratios of h/d = 1.2, 1.5 and 6.0. Velocity field measurements were obtained at five locations along the transient in each case. Using Y to denote the distance the sphere has fallen from rest, velocity fields were obtained at Y/d = 0.105, 0.262, 0.524, 1.05, and 3.15. <p>It was observed that the proximity of the walls tends to retard the motion of the sphere. A simple empirical correlation was fit to the observed sphere velocities in each case. A wall correction factor was used on the quasi-steady drag term in order to make the predicted unbounded terminal velocity match the observed terminal velocity when the walls had an effect. While it has been previously established that the velocity of a sphere is retarded by the proximity of walls, the current research examined the link between the motion of the sphere and the dynamics of the fluid that surrounds it. By examining the velocity profile between the surface of the sphere at the equator and the wall, it was noticed that the shear stresses acting on the sphere increase throughout the transient, and also increase as the wall spacing decreases. This is due to the walls blocking the diffusion of vorticity away from the sphere as it accelerates leading to higher shear stresses. <p>In an unbounded fluid, the falling sphere will drag fluid along with it, and further from the sphere, fluid will move upward to compensate. It was found that there is a critical wall spacing that will completely prevent this recirculation in the gap between the sphere and the wall. In the 80%wt glycerol case, this critical wall spacing is between h/d = 1.2 and 1.5, and in the 100%wt glycerol case the critical wall spacing is between h/d = 1.5 and 6.0.
113

Study of creeping, inertial and turbulent flow regimes in porous media using particle image velocimetry

Patil, Vishal A. 20 December 2012 (has links)
Porous media flows are encountered in many natural and man-made systems such as gas adsorption, filtration, heat exchangers, combustion, catalytic reactors and groundwater hydrology. This study experimentally investigates these flows as function of pore Reynolds number, Re[subscript pore]. The pore Reynolds number is based on the porous bed hydraulic diameter, D[subscript H] =φD[subscript Β]/(1−φ) where φ is bed porosity and D[subscript B] is solid phase bead diameter and average bed interstitial velocity, V[subscript int]= V[subscript Darcy]/φ, where VDarcy= Q/A[subscript bed], with Q being the volumetric flow rate and A[subscript bed] the bed cross section normal to the flow. The flow characteristics are studied through application of a particle displacement technique called particle image velocimetry, PIV. In the case of PIV, flow fields are estimated by seeding the flow with tracer particles and then evaluating their displacements. Application of quantitative imaging technique such as PIV to a complex flow domain like porous bed requires matching refractive index of liquid phase to that of the solid phase. Firstly, the effect of slight index mismatch, due to experimental uncertainties, on obtaining highly accurate PIV measurements as expressed as an experimental uncertainty was explored. Mismatch of refractive indices leads to error in estimation of particle positions and their displacements due to refraction at solid-liquid interfaces. Slight mismatch, in order of 10⁻³, in refractive indices also leads to reduction in particle density, particle signal peak intensity and degrade the particle image. These effects on velocity field estimation using PIV is studied experimentally and numerically. The numerical model, after validating against experimental results, is used to generate an expression for the error in PIV measurements as a function of refractive index mismatch for a range of bead diameters, bed widths, bed porosity, and optical magnification. After refractive index matching, planar PIV measurements were taken at discrete locations throughout a randomly packed bed with aspect ratio (bed width to bead diameter) of 4.67 for steady, low pore Reynolds number flows, Re[subscript pore] ~ 6, intermediate Re[subscript pore] of 54 and unsteady flow with high Re[subscript pore] ranging from 400-4000. Details of the measurement uncertainties as well as methods to determine local magnification and determination of the dynamic velocity range are presented. The data are analyzed using the PIV correlation averaging method for steady flows and multigrid and multipass correlation methods for unsteady turbulent flows with the largest velocity uncertainties arising from in plane image loss and out of plane motion. Results for low Re[subscript pore] flows show the correspondence of the geometric and velocity correlation functions across the bed, and that the centerline of the bed shows a random-like distribution of velocity with an integral length scale on the order of one hydraulic diameter (or 0.38 bead diameters based on the porosity for this bed). The velocity variance is shown to increase by a factor of 1.8 when comparing the center plane data versus using data across the entire bed. It is shown that the large velocity variance contributes strongly to increased dispersion estimates, and that based on the center plane data of the variance and integral length scales, the dispersion coefficient matches well with that measured in high aspect ratio beds using global data. For unsteady and turbulent flow, velocity data were used to determine the following turbulence measures: (i) turbulent kinetic energy components, (ii) turbulent shear production rate, (iii) integral Eulerian length and time scales, and (iv) energy spectra all for a range of pore Reynolds numbers, Re[subscript pore], from 418 to 3964. These measures, when scaled with the bed hydraulic diameter, DH, and average interstitial velocity, V[subscript int], all collapse for Re[subscript pore], beyond approximately 2800, except that the integral scales collapse at a lower value near 1300-1800. The results show that the pore turbulence characteristics are remarkably similar from pore to pore and that scaling based on bed averaged variables like D[subscript H] and V[subscript int] characterizes their magnitudes despite very different local mean flow conditions. In the case of high Re[subscript pore] flows, large scale structures such as stationary and convected vortices and structures resembling jets were also identified. These structures were analyzed in detail using decomposition techniques like Large Eddy Scale decomposition and critical point analysis like swirl strength analysis. Direct velocity measurements were used to estimate Lagrangian statistics through Eulerian measures and then estimate contribution of flow structures to turbulent mechanical dispersion. Results agree well with those in the literature obtained using global measurements in very high aspect ratio, long test beds. Stationary vortical or recirculation regions were seen to play a dominant role in contributing to overall dispersion in porous beds. / Graduation date: 2013
114

An investigation of river kinetic turbines: performance enhancements, turbine modelling techniques, and an assessment of turbulence models

Gaden, David L. F. 27 September 2007 (has links)
The research focus of this thesis is on modelling techniques for river kinetic turbines, to develop predictive numerical tools to further the design of this emerging hydro technology. The performance benefits of enclosing the turbine in a shroud are quantified numerically and an optimized shroud design is developed. The optimum performing model is then used to study river kinetic turbines, including different anchoring systems to enhance performance. Two different turbine numerical models are studied to simulate the rotor. Four different computational fluid dynamics (CFD) turbulence models are compared against a series of particle image velocimetry (PIV) experiments involving highly-separated diffuser-flow and nozzle-flow conditions. The risk of cavitation is briefly discussed as well as riverbed boundary layer losses. This study is part of an effort to develop this emerging technology for distributed power generation in provinces like Manitoba that have a river system well adapted for this technology. / May 2007
115

Computational and experimental modeling of fluid flow and heat transfer processes in complex geometries

Varela Ballesta, Sylvana Verónica 17 April 2012 (has links)
El objetivo principal de este trabajo es el estudio numérico (caffa3d.MB) y experimental (PIV) de los campos de velocidad y de temperatura en dominios complejos como los encontrados en las computadoras u otros sistemas electrónicos refrigerados que contengan circuitos impresos (PCB, Printed Circuit Board). La refrigeración es uno de los principales desafíos que estos dispositivos se deben tratar. La disipación del calor de los dispositivos de circuitos electrónicos se ha convertido en una cuestión importante a tener en cuenta durante su diseño. Los PCB son circuitos electrónicos que generan calor por efecto Joule y necesitan ser enfriados. Son cada vez más pequeños y por lo tanto los problemas del calentamiento disminuyen su eficiencia y vida útil. El estudio de la velocidad y los campos de temperatura está estrechamente relacionada con el análisis de la evolución espacial y temporal de las estructuras de flujo que se encuentran en las cavidades cerradas que contiene PCB y con el entendimiento de la influencia de la geometría, la velocidad de entrada de fluido y temperatura de la placa en el proceso de enfriamiento del PCB. / The main objective of this work is the numerical (caffa3d.MB) and experimental (PIV) study of the velocity and temperature fields in complex domains like those encountered in computers or other electronic refrigerated systems with printed circuit board (PCB). Cooling is one of the main challenges these devices have to deal with. Heat removal from the electronic circuit devices has become an important issue to take into account during their design. PCB's are electronic circuits that generate heat by Joule effect and need to be cooled down. They are becoming smaller and therefore some warming problems appear that lowers their efficiency and lifespan. The study of the velocity and temperature fields is closely connected with the analysis of the spatial and temporal evolution of the flow structures found in PCB enclosed cavities and with the understanding of the influence of the geometry, the inlet fluid velocity and plate temperature in the cooling process of the PCB.
116

The transient motion of a solid sphere between parallel walls

Brooke, Warren Thomas 20 October 2005 (has links)
This thesis describes an investigation of the velocity field in a fluid around a solid sphere undergoing transient motion parallel to, and midway between, two plane walls. Particle Image Velocimetry (PIV) was used to measure the velocity at many discrete locations in a plane that was perpendicular to the walls and included the centre of the sphere. The transient motion was achieved by releasing the sphere from rest and allowing it to accelerate to terminal velocity. <p>To avoid complex wake structures, the terminal Reynolds number was kept below 200. Using solutions of glycerol and water, two different fluids were tested. The first fluid was 100%wt glycerol, giving a terminal Reynolds number of 0.6 which represents creeping flow. The second solution was 80%wt glycerol yielding a terminal Reynolds number of 72. For each of these fluids, three wall spacings were examined giving wall spacing to sphere diameter ratios of h/d = 1.2, 1.5 and 6.0. Velocity field measurements were obtained at five locations along the transient in each case. Using Y to denote the distance the sphere has fallen from rest, velocity fields were obtained at Y/d = 0.105, 0.262, 0.524, 1.05, and 3.15. <p>It was observed that the proximity of the walls tends to retard the motion of the sphere. A simple empirical correlation was fit to the observed sphere velocities in each case. A wall correction factor was used on the quasi-steady drag term in order to make the predicted unbounded terminal velocity match the observed terminal velocity when the walls had an effect. While it has been previously established that the velocity of a sphere is retarded by the proximity of walls, the current research examined the link between the motion of the sphere and the dynamics of the fluid that surrounds it. By examining the velocity profile between the surface of the sphere at the equator and the wall, it was noticed that the shear stresses acting on the sphere increase throughout the transient, and also increase as the wall spacing decreases. This is due to the walls blocking the diffusion of vorticity away from the sphere as it accelerates leading to higher shear stresses. <p>In an unbounded fluid, the falling sphere will drag fluid along with it, and further from the sphere, fluid will move upward to compensate. It was found that there is a critical wall spacing that will completely prevent this recirculation in the gap between the sphere and the wall. In the 80%wt glycerol case, this critical wall spacing is between h/d = 1.2 and 1.5, and in the 100%wt glycerol case the critical wall spacing is between h/d = 1.5 and 6.0.
117

Free-surface film flow of a suspension and a related concentration instability

Timberlake, Brian D. (Brian Davis) 01 April 2004 (has links)
Film flow of a suspension has been investigated both experimentally and theoretically. Gravity-driven free-surface inclined plane flow of a suspension of neutrally buoyant particles has been investigated using a stereoscopic particle imaging velocimetry technique. Particles have been shown to migrate away from the solid surface, and the film thickness has been shown to decrease as the fluid moves down the inclined plane. The free surface has been characterized using a light reflection technique, which shows that surface topography is affected by the inclination angle, and the particle concentration. This flow has been modeled based on a suspension normal stress approach. A boundary condition at the free surface has been examined, and model predictions have been compared with experimental results. The model predicts that the film thickness, relative to its initial value, will decrease with the bulk particle concentration. The thin film flow over the inner cylinder in partially filled Couette flow of a suspension has been experimentally investigated as well as modeled. Concentration bands have been shown to form under a variety of different fill fractions, bulk particle concentrations, inclination angles, ratio of inner to outer cylinder, and rotation rates of the inner cylinder. The banding phenomena ranges from a regime where bands are small, mobile and relatively similar in concentration to the bulk, to a regime where the concentration bands are larger, stationary, and where the space between them is completely devoid of particles. The role of the film thickness in the band formation process has been investigated, and has led to a model for the band formation process based on a difference in the rate that fluid can drain from height fluctuations relative to the particles.
118

Mixing Performance Evaluation of a Micromixer Utilizing CFD and micro PIV system

Tsai, Ming-Feng 03 September 2005 (has links)
This study proposed a novel design of the passive micromixer which employed several quadrilateral shaped blocks in the micro channel to enhance mixing. Both numerical and experimental investigations have been carry out. Commercial software CFD-ACE was used to simulate the flows. The simulation results showed great agreement with the measured results, implying that Navier¡VStokes¡¦ equations still effectively governs the micro-scope flows in this scale. It is effective to enhance mixing efficiency over wide flow rate ranges. Mixing performance was characterized by Laser-induced-fluorescence system (LIF system) to quantity the concentration distribution in the micro channel . In addition, Microscopic flow visualization was also setup to visualize the flow field in the micro mixer. Micro-particle image velocimetry (Micro-PIV) was used to measure the flow fields in microchannel filled with deionized water (DI water) . The system utilizes an epifluorescent microscope, 3.3 £gm diameter seed particles, and an high speed CCD camera to record particle-image fields. The vector fields are analyzed using a double-frame cross-correlation algorithm. The stochastic influence of Brownian motion plays a significant role in the accuracy of instantaneous velocity measurements.
119

Measurements Of Velocity Profiles By Using Particle Image Velocimeter

Kemalli, Onur 01 October 2009 (has links) (PDF)
Particle Image Velocimetry (PIV) is an optical technique used to display and evaluate the motion of fine particles in a flow. In this experimental study, velocity profiles are examined by PIV system and basic analysis methods are compared.
120

Internal flow effects on performance of combustion powered actuators

Rajendar, Ashok 18 November 2011 (has links)
Earlier investigations of Combustion Powered Actuation (COMPACT) have demonstrated its utility for high-speed aerodynamic flow control. In this actuation approach, momentary (pulsed) actuation jets are produced by the ignition of a mixture of gaseous fuel and oxidizer within a cubic-centimeter scale chamber. The combustion process yields a high pressure burst and the ejection of a high-speed exhaust jet. The present thesis focuses on characterization of the effects of the internal flow (which is altered through the fuel and oxidizer inlet streams) on mixing and flame propagation within the actuator's combustion chamber, and thereby on actuator operation and performance. A test chamber with a grid of interchangeable air and fuel inlets was used for parametric investigations of the effects of inlet size and location. Actuator performance is characterized using dynamic pressure measurements and phase-locked Particle Image Velocimetry (PIV) of the combustor's internal flow field in the presence and absence of the active combustion process. Over the range tested, increased momentum of the air inlet jet for a given flow rate improves the actuator performance by increasing bulk velocities and small-scale motions within the chamber, thus yielding net higher flame propagation speed and subsequently faster pressure rise and higher pressure peak. Variation in inlet location that results in swirling flow within the chamber yields higher internal pressures while air flow over the spark ignition site yields lower internal pressures and erratic combustion. Improved refill and combustion processes will lead to enhanced performance combustor designs.

Page generated in 0.0973 seconds