• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 59
  • 23
  • 21
  • 18
  • 12
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 323
  • 323
  • 323
  • 64
  • 61
  • 59
  • 56
  • 44
  • 39
  • 37
  • 37
  • 36
  • 35
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Multiple Cooperative Swarms for Data Clustering

Ahmadi, Abbas January 2008 (has links)
Exploring a set of unlabeled data to extract the similar clusters, known as data clustering, is an appealing problem in machine learning. In other words, data clustering organizes the underlying data into different groups using a notion of similarity between patterns. A new approach to solve the data clustering problem based on multiple cooperative swarms is introduced. The proposed approach is inspired by the social swarming behavior of biological bird flocks which search for food situated in several places. The proposed approach is composed of two main phases, namely, initialization and exploitation. In the initialization phase, the aim is to distribute the search space among several swarms. That is, a part of the search space is assigned to each swarm in this phase. In the exploitation phase, each swarm searches for the center of its associated cluster while cooperating with other swarms. The search proceeds to converge to a near-optimal solution. As compared to the single swarm clustering approach, the proposed multiple cooperative swarms provide better solutions in terms of fitness function measure for the cluster centers, as the dimensionality of data and number of clusters increase. The multiple cooperative swarms clustering approach assumes that the number of clusters is known a priori. The notion of stability analysis is proposed to extract the number of clusters for the underlying data using multiple cooperative swarms. The mathematical explanations demonstrating why the proposed approach leads to more stable and robust results than those of the single swarm clustering are also provided. Application of the proposed multiple cooperative swarms clustering is considered for one of the most challenging problems in speech recognition: phoneme recognition. The proposed approach is used to decompose the recognition task into a number of subtasks or modules. Each module involves a set of similar phonemes known as a phoneme family. Basically, the goal is to obtain the best solution for phoneme families using the proposed multiple cooperative swarms clustering. The experiments using the standard TIMIT corpus indicate that using the proposed clustering approach boosts the accuracy of the modular approach for phoneme recognition considerably.
62

Hybrid Data Mining and MSVM for Short Term Load Forecasting

Yang, Ren-fu 21 June 2010 (has links)
The accuracy of load forecast has a significant impact for power companies on executing the plan of power development, reducing operating costs and providing reliable power to the client. Short-term load forecasting is to forecast load demand for the duration of one hour or less. This study presents a new approach to process load forecasting. A Support Vector Machine (SVM) was used for the initial load estimation. Particle Swarm Optimization (PSO) was then adopted to search for optimal parameters for the SVM. In doing the load forecast, training data is the most important factor to affect the calculation time. Using more data for model training should provide a better forecast results, but it needs more computing time and is less efficient. Applications of data mining can provide means to reduce the data requirement and the computing time. The proposed Modified Support Vector Machines approach can be proved to provide a more accurate load forecasting.
63

A Study on Parameter Identification of Induction Machine

Su, Tzu-Jung 03 August 2011 (has links)
Parameter identification of an induction machine is of great importance in numerous industrial applications, including the assessment of machine performance and design of control schemes. Parameter identification is based on the input-output signals and the model used. Many researches have applied the inverter drive to control the exciting signal of the induction machine in the identifying process. This study proposed a method to identify all parameter of the induction machine with a no-load low-voltage starting test. The method has a simple structure without needing extra hardware, which could significantly simplify the procedures and save cost. Based on the curves of resistance and reactance, the user can obtain the machine¡¦s equivalent circuit parameters. With the identified parameters of the equivalent circuit, input voltage, and rotor speed, the user can find the torque. From the torque and rotor speed, the user can find the mechanical parameters. A least mean square (LMS) method was used with a particle swarm optimization (PSO) method to solve the aforementioned problem. From various tests, the practicability and accuracy of this method can been proven. This study also proposes a method to rapidly analyze power parameters. This method uses two adjacent data to compute the fundamental frequency component of voltage or current. The parameters of fundamental frequency component include frequency, amplitude, and phase. Under the condition of varied parameters, the frequency and phase are dependent. This method fixes the frequency and computes the amplitude and phase, and then stable results will be obtained.
64

Solution Of The Antenna Placement Problem By Means Of Global Optimization Techniques

Ural, Mustafa 01 August 2010 (has links) (PDF)
In this thesis work, minimization of platform-based coupling between the antennas of two VHF radios on an aircraft platform and two HF radios on a ship platform is aimed. For this purpose / an optimal antenna placement, which yields minimum average coupling between the antennas over the whole frequency band of operation is determined for each platform. Two important global optimization techniques, namely Genetic Algorithm Optimization and Particle Swarm Optimization, are used in determination of these optimal antenna placements. Aircraft &amp / ship platforms and antennas placed on them are modeled based on their real electrical and physical properties in CST &ndash / MWS (Microwave Studio) simulation tool. For each platform, antenna placements and coupling results determined by two different optimization techniques and performances of these optimization techniques are compared with each other. At the end of this thesis work / for each platform, far-field radiation pattern performances of the antennas at their optimal places are analyzed in terms of directivity and coverage.
65

TOA Wireless Location Algorithm with NLOS Mitigation Based on LS-SVM in UWB Systems

Lin, Chien-hung 29 July 2008 (has links)
One of the major problems encountered in wireless location is the effect caused by non-line of sight (NLOS) propagation. When the direct path from the mobile station (MS) to base stations (BSs) is blocked by obstacles or buildings, the signal arrival times will delay. That will make the signal measurements include an error due to the excess path propagation. If we use the NLOS signal measurements for localization, that will make the system localization performance reduce greatly. In the thesis, a time-of-arrival (TOA) based location system with NLOS mitigation algorithm is proposed. The proposed method uses least squares-support vector machine (LS-SVM) with optimal parameters selection by particle swarm optimization (PSO) for establishing regression model, which is used in the estimation of propagation distances and reduction of the NLOS propagation errors. By using a weighted objective function, the estimation results of the distances are combined with suitable weight factors, which are derived from the differences between the estimated measurements and the measured measurements. By applying the optimality of the weighted objection function, the method is capable of mitigating the NLOS effects and reducing the propagation range errors. Computer simulation results in ultra-wideband (UWB) environments show that the proposed NLOS mitigation algorithm can reduce the mean and variance of the NLOS measurements efficiently. The proposed method outperforms other methods in improving localization accuracy under different NLOS conditions.
66

Study of Two-Objective Dynamic Power Dispatch Problem by Particle Swarm Optimization

Chen, Yi-Sheng 12 June 2009 (has links)
In recent years, the awareness of environmental protection has made the power dispatch model no longer purely economical-oriented. This thesis proposed the application of particle swarm optimization (PSO) algorithm and interactive compromise programming method to solve the 24-hour two-objective power dispatch problem. Considering simultaneously the lowest generating cost and the lowest pollution emission, the two mutually-conflicting objectives will choose a compromised dispatch model. This thesis joined the mixed-integer programming problem of optimal power flow (MIOPF) with the dynamic economic dispatch (DED), making this dispatch solution more realistic without electrical violations; The MIOPF considers both continuous and discrete types of variables. The continuous variables are the generating unit real power output and the generator-bus voltage magnitudes; the discrete variables are the shunt capacitor banks and transformer tap setting. Simulation were run on the standard IEEE 30 Bus system. In order to avoid the PSO local optimality problem, this thesis proposed the utilization of the PSO algorithm with time-varying acceleration coefficients (PSO_TVAC) plus the local random search method (LRS), so it can quickly and effectively reach the optimal solution, without advantages of performance and accuracy of PSO. This thesis also proposed the consideration of the available transfer capability (ATC) on transmission lines of the existing dispatch model. Applying sensitivity factors to calculate each generator¡¦s available transfer capability that can be offered in the analyzed time interval, enables the creation of a new constraint. Joined with the dynamic economic dispatch problem, it will make possible that a load client wishes to raise its demand. Simultaneously taking care of the minimum cost and the limits of system security, better dispatch results could be expected.
67

A Study of Particle Swarm Optimization Trajectories for Real-Time Scheduling

Schor, Dario 02 August 2013 (has links)
Scheduling of aperiodic and independent tasks in hard real-time symmetric multiprocessing systems is an NP-complete problem that is often solved using heuristics like particle swarm optimization (PSO). The performance of these class of heuristics, known as evolutionary algorithms, are often evaluated based on the number of iterations it takes to find a solution. Such metrics provide limited information on how the algorithm reaches a solution and how the process could be accelerated. This thesis presents a methodology to analyze the trajectory formed by candidate solutions in order to analyze them in both the time and frequency domains at a single scale. The analysis entails (i) the impact of different parameters for the PSO algorithm, and (ii) the evolutionary processes in the swarm. The work reveals that particles have a directed movement towards a solution during a transient phase, and then enter a steady state where they perform an unguided local search. The scheduling algorithm presented in this thesis uses a variation of the minimum total tardiness with cumulative penalties cost function, that can be extended to suit different system needs. The experimental results show that the scheduler is able to distribute tasks to meet the real-time deadlines over 1, 2, and 4 processors and up to 30 tasks with overall system loads of up to 50\% in fewer than 1,000 iterations. When scheduling greater loads, the scheduler reaches local solutions with 1 to 2 missed deadlines, while larger tasks sets take longer to converge. The trajectories of the particles during the scheduling algorithm are examined as a means to emphasize the impact of the behaviour on the application performance and give insight into ways to improve the algorithm for both space and terrestrial applications.
68

Parallel algorithm design and implementation of regular/irregular problems: an in-depth performance study on graphics processing units

Solomon, Steven 16 January 2012 (has links)
Recently, interest in the Graphics Processing Unit (GPU) for general purpose parallel applications development and research has grown. Much of the current research on the GPU focuses on the acceleration of regular problems, as irregular problems typically do not provide the same level of performance on the hardware. We explore the potential of the GPU by investigating four problems on the GPU with regular and/or irregular properties: lookback option pricing (regular), single-source shortest path (irregular), maximum flow (irregular), and the task matching problem using multi-swarm particle swarm optimization (regular with elements of irregularity). We investigate the design, implementation, optimization, and performance of these algorithms on the GPU, and compare the results. Our results show that the regular problem achieves greater performance and requires less development effort than the irregular problems. However, we find the GPU to still be capable of providing high levels of acceleration for irregular problems.
69

Image Filtering Methods for Biomedical Applications

Niazi, M. Khalid Khan January 2011 (has links)
Filtering is a key step in digital image processing and analysis. It is mainly used for amplification or attenuation of some frequencies depending on the nature of the application. Filtering can either be performed in the spatial domain or in a transformed domain. The selection of the filtering method, filtering domain, and the filter parameters are often driven by the properties of the underlying image. This thesis presents three different kinds of biomedical image filtering applications, where the filter parameters are automatically determined from the underlying images. Filtering can be used for image enhancement. We present a robust image dependent filtering method for intensity inhomogeneity correction of biomedical images. In the presented filtering method, the filter parameters are automatically determined from the grey-weighted distance transform of the magnitude spectrum. An evaluation shows that the filter provides an accurate estimate of intensity inhomogeneity. Filtering can also be used for analysis. The thesis presents a filtering method for heart localization and robust signal detection from video recordings of rat embryos. It presents a strategy to decouple motion artifacts produced by the non-rigid embryonic boundary from the heart. The method also filters out noise and the trend term with the help of empirical mode decomposition. Again, all the filter parameters are determined automatically based on the underlying signal. Transforming the geometry of one image to fit that of another one, so called image registration, can be seen as a filtering operation of the image geometry. To assess the progression of eye disorder, registration between temporal images is often required to determine the movement and development of the blood vessels in the eye. We present a robust method for retinal image registration. The method is based on particle swarm optimization, where the swarm searches for optimal registration parameters based on the direction of its cognitive and social components. An evaluation of the proposed method shows that the method is less susceptible to becoming trapped in local minima than previous methods. With these thesis contributions, we have augmented the filter toolbox for image analysis with methods that adjust to the data at hand.
70

A Study of Particle Swarm Optimization Trajectories for Real-Time Scheduling

Schor, Dario 02 August 2013 (has links)
Scheduling of aperiodic and independent tasks in hard real-time symmetric multiprocessing systems is an NP-complete problem that is often solved using heuristics like particle swarm optimization (PSO). The performance of these class of heuristics, known as evolutionary algorithms, are often evaluated based on the number of iterations it takes to find a solution. Such metrics provide limited information on how the algorithm reaches a solution and how the process could be accelerated. This thesis presents a methodology to analyze the trajectory formed by candidate solutions in order to analyze them in both the time and frequency domains at a single scale. The analysis entails (i) the impact of different parameters for the PSO algorithm, and (ii) the evolutionary processes in the swarm. The work reveals that particles have a directed movement towards a solution during a transient phase, and then enter a steady state where they perform an unguided local search. The scheduling algorithm presented in this thesis uses a variation of the minimum total tardiness with cumulative penalties cost function, that can be extended to suit different system needs. The experimental results show that the scheduler is able to distribute tasks to meet the real-time deadlines over 1, 2, and 4 processors and up to 30 tasks with overall system loads of up to 50\% in fewer than 1,000 iterations. When scheduling greater loads, the scheduler reaches local solutions with 1 to 2 missed deadlines, while larger tasks sets take longer to converge. The trajectories of the particles during the scheduling algorithm are examined as a means to emphasize the impact of the behaviour on the application performance and give insight into ways to improve the algorithm for both space and terrestrial applications.

Page generated in 0.1729 seconds